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UNIT IV 

 ITERATIVE IMPROVEMENT  

The Simplex Method-The Maximum-Flow Problem – Maximm Matching in Bipartite Graphs- The 

Stable marriage Problem. 

PART A 

1. What is feasible solution and feasible region? 

A solution that satisfies all the constraints of the problem is called the feasible solution; the 

set of all such feasible points (solution) is called the feasible region.  

Linear programming problems with the empty feasible region are called infeasible. 

 Define optimal solution. 
A feasible solution that satisfies the objective function  ( maximizes or minimizes) is called 

the optimal solution. 

  1.When the feasible region in linear programming becomes unbounded 

If feasible region for the objective function may or may not attain a finite optimal value, 

then such problems are called unbounded. 

 2.Define or state  extreme point theorem. Nov/Dec 2017 

Any linear programming problem with a nonempty bounded feasible region has an optimal 

solution; moreover, an optimal solution can always be found at an extreme point of the 

problem’s feasible region. 

3.What are the requirements for the standard form of linear programming problem? OR 

when a linear program is said to be unbounded  Nov/Dec 2019 

      The standard form has the following requirements: 

 It must be a maximization problem. 

 All the constraints (except the non negativity constraints) must be in the form of 

linear equations with nonnegative right-hand sides. 

 All the variables must be required to be nonnegative. 

4.Write the general linear programming problem in standard   form. 

 The general linear programming problem in standard form with m constraints and n 

unknowns (n ≥ m) is 

 maximize c1x1 + . . . + cnxn 

 subject to ai1x1 + . . . + ainxn= bi,  

 where bi≥ 0 for i = 1, 2, . . . , m 

 x1 ≥ 0, . . . , xn≥ 0. 

               It can also be written in compact matrix notations: 

 maximize cx 

 subject to Ax = b 

 where x ≥ 0, 

c = [c1 c2  cn], x = 











 

x1

x2



xn

 , A = 









 

a11    a12       a1n

           

am1   am2      amn

 , b = 











 

b1

b2



bm

  

5. What is basic and non basic solution? 

If the system obtained has a unique solution—as any non degenerate system of linear 

equations with the number of equations equal to the number of unknowns does is called a 

basic solution; its coordinates set to zero before solving the system are called nonbasic, and 

its coordinates obtained by solving the system are called basic. 

6. Define objective row. 

The last row of a simplex tableau is called the objective row. 

7. Define maximum flow problem. 
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The problem of maximizing the flow of a material through a transportation network is 

called the maximum flow problem. 

8. Define flow network.  Or What are the essential properties of a flow graph ?(April/May 2021) 

A digraph satisfying the following properties is called a flow network or simply a network. 

 It contains exactly one vertex with no entering edges is called source and 

assumed to be numbered 1. 

 It contains exactly one vertex with no leaving edges is called the sink and 

assumed to be numbered n. 

 The weight uij of each directed edge (i, j ) is a positive integer, called the edge 

capacity. (defines upper bound) 

9. What is flow conservation requirement?  

The total amount of the material entering an intermediate vertex must be equal to the total 

amount of the material leaving the vertex is called the flow-conservation requirement. 

10. Define Max-Flow Min-Cut Theorem. 

The value of a maximum flow in a network is equal to the capacity of its minimum cut. 

11. Define preflow. 

A preflow is a flow that satisfies the capacity constraints but not the flow- conservation 

requirement. 

12. What is maximum cardinality matching? 

A matching in a graph is a subset of its edges with the property that no two edges share a 

vertex. A maximum matching also referred as maximum cardinality matching is a matching 

with the largest number of edges. 

13. Define or what are  bipartite graph .   (Nov/Dec 2021)                       

In a bipartite graph, all the vertices can be partitioned into two disjoint sets V and U, not 

necessarily of the same size, so that every edge connects a vertex in one of these sets to a 

vertex in the other set. 

14. Define stable marriage problem. 

A marriage matching M is a set of n (m, w) pairs whose members are selected from disjoint 

n-element sets Y and X in a one-one fashion, i.e., each man m from Y is paired with 

exactly one woman w from X and vice versa. The stable marriage problem is to find a 

stable marriage matching for men’s and women’s given preferences. 

17. What is iterative improvement method ? NOV-2018 What is meant by iterative 

improvement technique ? (April/May 2021) (NOV/DEC 2021) 

     The iterative method is a computational technique. It consists of  following steps 

       1. Start with some feasible solution. 

       2. Repeat following steps until no improvement is found 

Change current feasible solution to a feasible solution with a better value of 

objective function.                                                                 

       3. Return the last feasible solution as an optimal solution. 

18. Enlist various applications of iterative improvement    method? 

            Various application of iterative improvement method are- 

                   1. Simplex method 

                   2. Ford Flukersons algorithm  for maximum flow 

                   3. Matching of graph vertices. 

                   4. Stable marriage problem. 
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19. What is linear programming problem? 

      The standard for of linear programming is-     P=ax + by + cz 

      A linear programming (LP) problem is a problem in which we have to find the    

      maximum (or minimum) value of a linear objective function. 

 

20. What is bipartite graph ?            Nov/Dec 2017 

The graph G = (V, E) in which the vertex set V is divided into two disjoint sets X and Y in 

such a way that every edge e € E has one end point in X and other end point in Y. 

 For example 

 
 21. What is two colorable graph ? 

The two colorable graph is a graph that can be colored with only two colors in such a way 

that no edge connect the same color . the bipartite graph is two colorable graph 

 

22. What is maximum cardinality matching ? APR-2018 

It is a matching with largest number of matching edges. 

  

  23. What is maximum matching problem ? 

The maximum matching problem is a problem of finding maximum matching in a graph 

  

24. What is entering variable ? 

The entering variable is the smallest negative entry in the bottom row of the table. 

  

25. What is departing variable  

The departing variable is the smallest negative ratio of RHS/aij  in the column determined 

by entering variable. 

 

26.What do you mean by perfect matching in bipartite graph? (MAY 2015, Apr/May -2017) 

A perfect matching is a matching which matches all vertices of the graph. That is, every vertex of 

the graph is incident to exactly one edge of the matching. Figure (b) above is an example of a perfect 

matching. Every perfect matching is maximum and hence maximal. In some literature, the term 

complete matching is used. In the above figure, only part (b) shows a perfect matching. A perfect 

matching is also a minimum-size edge cover. Thus, ν(G) ≤ ρ(G) , that is, the size of a maximum 

matching is no larger than the size of a minimum edge cover. 

 

27.Define flow cut(AU MAY 2015) 

https://en.wikipedia.org/wiki/Incidence_%28geometry%29
https://en.wikipedia.org/wiki/Edge_cover
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    Maximum flow 

Definition. The capacity of an edge is a mapping c : E → R+, denoted by cuv or    c(u, v). It 

represents the maximum amount of flow that can pass through an edge. 

Definition. A flow is a mapping  f : E → R+, denoted by  fuv or  f (u, v), subject to the following 

two constraints: 

1. Capacity Constraint:  

 
2. Conservation of Flows:  

 
Definition. The value of flow is defined by 

 
where s is the source of N. It represents the amount of flow passing from the source to the sink. 

Maximum Flow Problem. Maximize | f |, that is, to route as much flow as possible from s to t. 

 Minimum cut 

Definition. An s-t cut C = (S, T) is a partition of V such that s ∈ S and t ∈ T. The cut-set 

of C is the set 

 
Note that if the edges in the cut-set of C are removed, | f | = 0. 

Definition. The capacity of an s-t cut is defined by 

 

where if and , 0 otherwise. 

Minimum s-t Cut Problem. Minimize c(S, T), that is, to determ ine S and T such that the capacity 

of the S-T cut is minimal. 

28. How is a transportation network represented? Apr-18 

Transportation networks generally refer to a set of links, nodes, and lines that represent the 

infrastructure or supply side of the transportation. The links have characteristics such as 

speed and capacity for roadways; frequency and travel time data are defined on transit links 

or lines for the transit system. 

29. What is solution space? Give an example. Dec-18 

Solution space is defined by the path from root node to any node in the tree. 

Answer states are those solution states s for which the path from root node to s defines a tuple 

that is a member of the. Set of solutions. – These states satisfy implicit constraints. State space 

tree is the tree organization of the solution space. 

30.Define the capacity constraint in the context of maximum flow problem Apr/May 2019 

Maximum Flow Problem 
Problem of maximizing the flow of a material through a transportation network (e.g., 

pipeline system, communications or transportation networks) 

Formally represented by a connected weighted digraph with n vertices numbered from 1 to n 

with the following properties:  

• Contains exactly one vertex with no entering edges, called the source (numbered 1) 

• Contains exactly one vertex with no leaving edges, called the sink (numbered n) 

Has positive integer weight uij on each directed edge (i.j), called theedge capacity, 

    indicating the upper bound on the amount of the material that can be sent from i to j through 

this edge. 

A digraph satisfying these properties is called a flow network or simply a network 

31. State   the principle of duality? 

https://en.wikipedia.org/wiki/Maximum_flow_problem
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The principle of duality in Boolean algebra states that if you have a true Boolean statement (equation) 

then the dual of this statement (equation) is true. The dual of a boolean statement is found by replacing the 

statement's symbols with their counterparts. 

PART B 

 

1.  Explain the simplex method with an example or linear   programming Apr/May -2017 

   Or List the steps in Simplex Method and give the efficiency of the same. Nov/Dec 2017 

Apr/May -2018 Nov/Dec 2018  

The standard for linear programming is P=ax + by + cz 

A linear programming(LP) problem is a problem in which we have to find the maximum (or 

minimum) value of a linear objective function. 

The desired largest (or smallest)value of the objective function is called the optimal value and a 

collection of values of x,y,z,….that gives the optimal value constitutes an optimal solution. 

 The variable x,y,z,…are called the decision variables. 

 A basic solution for which all variables are non negative is called a basic feasible 

solution. 

 

SIMPLEX METHOD: 

 

1.Use simplex method to solve the linear programming problem 

Max  Z=3x1+2x2 

subject to the constraints 

4x1+3x2 ≤ 12 

4x1+x2 ≤ 8 

4x1-x2 ≤ 8 , x1,x2 ≥0 

Solution : 

By introducing non - negative slack variables  s1,s2 and s3  the standard form of the LPP 

becomes                                         ↑ (cost of basic variables) 

Maximize   Z=3x1+2x2+0s1+0s2+0s3   

                                      Basic variables 

Subject to 

4x1+3x2 +s1= 12 

4x1+x2+s2 =8 

4x1-x2+s3 = 8 

 

 

x1    x2   s1   s2      s3         x1  xB 

          4 3 1 0 0  x2  12 

 4 1 0 1 0 s1 = 8 

 4       -1 0 0 1         s2  8  

 

 

Initial iterataion 

 

Cj 3 2 9 0 0  
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 Zj-Cj=min{-3,-2}=-3 

  x1→enter the basis 

leave the basis=min{ xB/ x1   } 

=min{+2,+2,+3}=2 

s3   → leave the basis 

key element=4 

 

 Here the basic variables are s1,s2 and s3 whereas the non basic variable are X and Y. 

 If we put x=0 and y=0 then we get s1=12,s2=8 and s3=8. 

 Hence the basic feasible solution can be written as 

o (x, y, s1, s2, s3) = (0, 0, 12, 8, 8) 

 After setting up the initial simplex table the next task is to check the optimality and then 

if current solution is not optimal, improve the current solution.  

 The improved solution is one that has a large z value than the current solution, to 

improve the current solution we obtain new basic variable into  the solution. 

 This variable is called the entering variable.  

 This also implies that one of the  current basic variable has to leave. 

 This leaving variable is called departing variable. 

 

Following are points to remember. 

    1. The entering variable is the smallest negative entry in the  

        bottom row of the table. 

              2. The departing variable is the smallest negative ratio of  

                  RHS/aij  in the column determined by entering variable. 

 3. The intersection of entering variable’s column and departing   

     variable’s row is called Pivot. Make pivot value as 1 if it is not. 

As the current solution (x, y, s1, s2, s3)=(0, 0,12, 8, 8) corresponds to z-value of 0    
…..(1)  

 

 

 

 

 

 

 

First iterataion 

 

 

 

 

 

 

 cB B x1 x2   s1   s2      s3          xB Ratio= 

xB/ x1    

0 s1   4 3 1 0 0 12 12/4=3 

0 s2     4 1 0 1 0 8 8/4=2 

0 s3 4 1 0 0 1 8 8/4=2 

(min) 

Zj 0 0 0 0 0  

Zj-Cj -3 -2 0 0 0 
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        ↑ 

(minu

s) 
 

New 

row=ol

drow-

keyrow*4      

4-(1*4)=0 

 3-(-1/4*4)=4 

1-0=1 

0-0=0 

0-(1/4*4)=-1 

12(2*4)=4 

 

New row=oldrow-keyrow*4  

           4-(1*4)=0 

1-(-1/4*4)=2 

0-0=0 

0-(1/4*4)=-1 

8-(2*4)=0 

   Zj-Cj=min{-11/4}=-11/4 

      X2→enter the basis 

leave the basis=min{ xB/ x1   } 

=min{+1,0}=0 

S2  → leave the basis 

key element=2 

 

 

 

 

 

 

 

 

 

 

 

 

second  iterataion 

Cj 3 2 0 0 0 
 

 cB B x1 x2   s1   s2      s3          xB Ratio= 

xB/ x1    

0 s1   0 4 1 0 -1 4 4/4=1 

0 s2     0 2 0 1 -1 0 0/2=0(min) 

3 x1 1 -1/4 0 0 1/4 2 -2*4=8 

Zj 3 -3/4 0 0 3/4 6  

Zj-Cj 0 -11/4 0 0 3/4  
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↑ (minus) 
New row=oldrow-keyrow*4  

0-0=0 

4-4=0 

1-0=1 

0-(1/2*4)=-2 

-1-(-1/2*4)=1 

4-0=4 

 

New row=old- -keyrow*-1/4   

 1-0=1 

1/4-(1*-1/4)=0 

0-0=0 

0-(1/2*-1/4)=1/8 

¼-(-1/2*-1/4)=1/8 

2-0=2 

 

Zj-Cj=min{-5/8}=- 5/8 

  S3→enter the basis 

leave the basis=min{ xB/ x1   } 

=min4,16}=4 

S1 → leave the basis 

key element=1 

 

 

 

 

 

 

 

 

 

 

Third  iterataion 

Cj 3 2 0 0 0 
 

 cB B x1 x2   s1   s2      s3          xB Ratio= 

xB/ x1    

0 s1   0 0 1 -2 1 4 4(min) 

2 x2 0 1 0 1/2 -1/2 0 -0*2=0 

3 x1 1 0 0 1/8 1/8 2 16  

Zj 3 2 0 11/8 -5/8 6  

Zj-Cj 0 0 0 11/8 -5/8  

Cj 3 2 0 0 0 
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New row=oldrow-keyrow*-1/2  

 0-0=0 

1-0=0 

0-(1*-1/2=1/2 

½-(-2*-1/2)=-1/2 

-1/2-(1*-1/2)=0 

0-(4*-1/2)=2 

New row=old-key-keyrow*1/1   

 1-0=1 

0-0=0 

0-(1*1/8)=-1/8 

1/8-(-2*1/8)=3/8 

1/8-(1*1/8)=0 

2-(4*1/8=3/2 

Since all  Zj-Cj≥0 

 The optimal solution is, 

                x1=3/2 

                x2=2 

               x3=0 

          Max Z =17/2 

 

1.A.Use simplex method to Min  Z= x2-3x3+2x5    subject to the constraints 

3x2-x3+2x5≤ 7 

-2x2+4x3≤ 12 

-4x2+3x3+8x5≤ 10 

And x2,x3,x5 ≥0 or  
solve the following set of equations using simplex algorithm:          Apr/May -2019 

maximize:18 x1 +12.5 x2 

subject to :x1 + x2 <= 20 

  x1<=12 

  x2<=16 

  x1,x2>=0 

 

 

Solution : 

By introducing non - negative slack variables  s1,s2 and s3  the standard form of 

the LPP becomes 

                              ↑ (cost of basic variables) 

 

 cB B x1 x2   s1   s2      s3          xB Ratio= 

xB/ x1    

0 S3  0 0 1 -2 1 4  

2 x2 0 1 1/2 -1/2 0 2  

3 x1 1 0 -1/8 3/8 0 3/2  

Zj 3 2 5/8 1/8 0 17/2  

Zj-Cj 0 0 5/8 1/8 0  
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 Minimization Z =3x2-x3+2x5 

Maximize  Z=-3x2+x3-2x5 

Subject to 

3x2-x3+2x5+s1= 7 

-2x2+4x3+s2= 12 

-4x2+3x3+8x5+s3=10 

 

x2    x3    x5  s1   s2      s3           xB 

 3       -1 2 1 0 0    7 
-2 4 0 0 1 0 =  12 

-4 3         8 0 0 1           10  

 

Initial iterataion 

         

 

    ↑ (minus) 

Zj-Cj=min{-3}=-3 
  X3→enter the basis 

leave the basis=min{ xB/ x1   } 

=min3,3.3}=3 

S2  → leave the basis 

key element=4 

 

 

 

 

 

 

first iteration 

Cj 
-1 

3 2 0 0 0 
 

 cB B x2 X3 X5  s1   s2      s3          xB Ratio= 

xB/ x3    

0 s1   3 -1 2 1 0 0 7 -7/1=7(min) 

0 s2     -2 4 0 0 1 0 12 12/4=3 

0 s3 -4 3 8 0 0 1 10 10/3=3.3  

Zj  0 0 0 0 0 0  

Zj-Cj +1 -3 +2 0 0 0  

Cj -1 3 2 0 0 0  
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↑ (minus) 

 

New row=oldrow-keyrow*-1    

 3-(-1/2*-1)=5/2 

-1-(1*-1)=0 

2-0=2 

1-0=1 

0-(1/4*-1)=0 

  7-(3*-1)=10 

New row=oldrow-keyrow*3    

-4-(-1/2*3)=-5/2 

3-3=0 

8-0=8 

0-0=0 

0-(1/4*3)=-3/4 

1-0=1 

10-(3*3)=1 

 

    Zj-Cj=min{-1/2}=-1/2 
      X2→enter the basis 

leave the basis=min{ xB/ x2  } 

=min{4}=4 

S1  → leave the basis 

key element=second iteration 

 

 

 

 

 

 

 

 cB B x2 X3 X5  s1   s2      s3          xB Ratio= 

xB/ x3    

0 s1   5/2 0 2 1 1/4 0 10 0*2/5=4(min) 

3 X3  -1/2 1 0 0 1/4 0 3 -3*2=-6 

0 S3 -5/2 0 8 0 -3/4 1 1 -2/5 

Zj -3/2 3 0 0 3/4 0 9  

Zj-Cj -1/2 0 2 0 3/4 0  

Cj -1 3 2 0 0 0  

 cB B x2 X3 X5  s1   s2      s3          xB Ratio= 

xB/ x3    
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Since all  Zj-Cj ≥ 0 
answer is  

 

 

 

 

 

2. Explain in detail about maximum flow problem.  Or  Determine the max-flow in 

the following network. 

 

 
 

 Apr/May 2019 

 Maximum Flow Problem 

Problem of maximizing the flow of a material through a transportation network (e.g., 

pipeline system, communications or transportation networks) 

Formally represented by a connected weighted digraph with n vertices numbered from 1 to n 

with the following properties: 

• Contains exactly one vertex with no entering edges, called the source (numbered 1) 

• Contains exactly one vertex with no leaving edges, called the sink (numbered n) 

• Has positive integer weight uij on each directed edge (i.j), called theedge capacity, 
indicating the upper bound on the amount of the material that can be sent from i to j  
through this edge. 

• A digraph satisfying these properties is called a flow network or simply a network. 

 

 

Example of Flow Network 
 
 
 
 
 
 
 

-1 x2 1 0 4/5 2/5 1/10 0 4  

3 X3 0 1 2/5 1/5 3/10 0 5  

0 s3 0 0 10 1 -1/2 1 11  

Zj -1 3 2/5 1/5 8/10 0 11  

Zj-Cj 0 0 12/5 1/5 8/10 0  

min ( Z )=-11 
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Node (1) = source 

Node(6) = sink 

Definition of a Flow 

A flow is an assignment of real numbers xij to edges (i,j) of a given network that satisfy  

The following: 

 flow-conservation requirements 

The total amount of material entering an intermediate vertex must be equal to the total 

amount of the material leaving the vertex 

 capacity constraints 

0 ≤ xij ≤ uij for every edge (i,j)  E  

Flow value and Maximum Flow Problem 

Since no material can be lost or added to by going through intermediate vertices of the network, 

 The total amount of the material leaving the source must end up at the sink: 

∑ x1j = ∑ xjn 

j: (1,j) є E  j: (j,n) є E  

The value of the flow is defined as the total outflow from the source (= the total inflow into 

 Thesink). The maximum flow problem is to find a flow of the largest value (maximum flow) for 

a given network. 

Maximum-Flow Problem as LP  problem 

Maximize v = ∑ x1j 

j: (1,j)  E  

subject to  

∑ xji - ∑ xij = 0 for i = 2, 3,…,n-1 

j: (j,i)  E  j: (i,j)  E  

0 ≤ xij ≤ uij for every edge (i,j)  E  

Augmenting Path (Ford-Fulkerson) Method 

Start with the zero flow (xij = 0 for every edge). 

On each iteration, try to find a flow-augmenting path from source to sink, which a path 

along which some additional flow can be sent. 

If a flow- augmenting path is found, adjust the flow along the edges of this path to get a 

flow of increased value and try again. 

If no flow-augmenting path is found, the current flow is maximum. 

 

 

Example 1 
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Augmenting path: 1 2 3 6 

xij/uij 

  

 

 

 

 

 

 

 

 

 

Augmenting path: 1 4 3 2 5 6 

 

Example 1 (maximum flow) 

 

 

 

 

 

 

 

 

 

 

 
 
Finding a flow-augmenting path 

To find a flow- gmenting path for a flow x, consider paths from source to sink in the  

Underlying undirected graph in which any two consecutive vertices i,j are either: 

connected by a directed edge (i to j) with some positive unused capacity rij = uij – xij 

 

– known as forward edge ( ) 

OR 

connected by a directed edge (j to i) with positive flow xji 

– known as backward edge ( ) 

If a flowaugmenting path is found, the current flow can be increased by r units by increasing  

xij byr on each forward edge and decreasing xji by r on each backward edge,

 where 

r = min {rij on all forward edges, xji on all backward edges} 

Assuming the edge capacities are integers, r is a positive integer 

On each iteration, the flow value increases by at least 1 

Maximum value is bounded by the sum of the capacities of the edges leaving the source; 

hence the augmenting-path method has to stop after a finite number of iterations 



The final flow is always maximum, its value doesn’t depend on a sequence of 
augmenting paths used 
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Performance degeneration of the method 

The augmentingpath method doesn’t prescribe a specific way for generating flow- 

augmenting paths 

 Selecting a bad sequence of augmenting paths could impact the method’s efficiency 

 

Example 2 

 

 

 

 

 

 

 

 

 

                       

 

 

 

 

                         1→2→4→3 

 

      

 

 
 

                                                      

 

                                                                       1→4←2→3     V=1 

 

 

                                                              

 

            

 

                                                                       
 

 

        V=2 
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                                                                        V=2U 

 

 

 

 

Requires 2U iterations to reach maximum flow of value 2U 

Shortest-Augmenting-Path Algorithm 

Generate augmenting path with the least number of edges by BFS as follows. 

Starting at the source, perform BFS traversal by marking new (unlabeled) vertices with two labels: 

first label  indicates the amount of additional flow that can be brought from the 

source to the vertex being labeled 

second label – indicates the vertex from which the vertex being labeled was reached, 

with “+” or “–added to the second label to indicate whether the vertex was 
reached via a forward or backward edge 

Vertex labeling 

 The source is always labeled with ∞,- 

 All other vertices are labeled as follows: 

  
If unlabeled vertex j is connected to the front vertex i of the traversal queue by adirected  
       edge from i to j with positive unused capacity 

 rij = uij –xij (forward edge),vertex j is labeled with lj,i
+
, where lj = min{li, rij} 

If unlabeled vertex j is connected to the front vertex i of the traversal queue by adirected edge

 from j to i with positive flow xji (backward edge), vertex j is labeled 

lj,i
-
, where lj = min{li, xji} 

If the sink ends up being labeled, the current flow can be augmented by the amount 

indicated by the sink’s first label. 

The augmentation of the current flow is performed along the augmenting path traced by 
following the vertex second labels from sink to source; the current flow 

 quantities areincreased on the forward edges and decreased on the backward edges of  
this path. 

If the sink remains unlabeled after the traversal queue becomes empty, the algorithm returns 

the current flow as maximum and stops. 
 

Example: Shortest-Augmenting-Path Algorithm 

 
 
 

 

 

 

 

 

 

 

 
 
 
Queue: 1 2 4 3 5 6 
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Augment the flow by 2 (the sink’s first label) along the path 1 2 3 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ueue: 1 4 3 2 5 6 

Augment the flow by 1 (the sink’s first label) along the path 1 4 3 2 5 6 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Queue: 1 4 
 

No augmenting path (the sink is unlabeled) the current flow is maximum 

 

Definition of a Cut 
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Let X be a set of vertices in a network that includes its source but does not include its sink, and

 letX, the complement of X, be the rest of the vertices including the sink. The cut induced 

by this partition of the vertices is the set of all the edges with a tail in X and a head in X. 

Capacity of a cut is define 

d as the sum of capacities of the edges that compose the cut. 

→e’ll denote a cut and its capacity by C(X,X) and c(X,X) 

Note that if all the edges of a cut were deleted from the network, there would be no 

directed path from source to sink 

Minimum cut is a cut of the smallest capacity in a given network 

 

 

Examples of network cuts 

 

 

 

 

 

 

 

 

 

 

 

 

If X = {1} and X = {2,3,4,5,6}, C(X,X) = {(1,2), (1,4)}, c = 5 

If X ={1,2,3,4,5} and X = {6}, C(X,X) = {(3,6), (5,6)}, c = 6 

If X = {1,2,4} and X ={3,5,6}, C(X,X) = {(2,3), (2,5), (4,3)}, c = 9 

 

Max-Flow Min-Cut Theorem 

1. The value of maximum flow in a network is equal to the capacity of its minimum cut 

2. The shortest augmenting path algorithm yields both a maximum flow and a minimum cut: 

Maximum flow is the final flow produced by the algorithm 

Minimum cut is formed by all the edges from the labeled vertices to unlabeledvertices on t

he last iteration of the algorithm. 

All the edges from the labeled to unlabeled vertices are full, i.e., their flow amountsare equal to 

the edge capacities, while all the edges from the unlabeled to labeledvertices, if any, have zero

 flow amounts on them. 

ALGORITHM ShortestAugmentingPath(G) 

//Implements the shortest-augmenting-path algorithm 

//Input: A network with single source 1, single sink n, and positive integer capacities uij

 on 

// its edges (i, j ) 

//Output: A maximum flow x 

assign xij= 0 to every edge (i, j ) in the network 

label the source with ∞, − and add the source to the empty queue Q 
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while not Empty(Q) do 

i Front(Q); Dequeue(Q) 

for every edge from i to j do //forward edges 

if j is unlabeled 

rij uij− xij 

if rij > 0 

lj min{li, rij}; label j with lj, i + 

Enqueue(Q, j ) 

for every edge from j to i do //backward edges 

if j is unlabeled 

if xji > 0 

lj min{li, xji }; label j with lj, i− 

Enqueue(Q, j ) 

if the sink has been labeled 

//augment along the augmenting path found 

j n //start at the sink and move backwards using second labels 

while j ≠ 1 //the source hasn’t been reached 

if the second label of vertex j is i+ 

xij xij+ ln 

else //the second label of vertex j is i− 

xij xij −ln 

j i; i the vertex indicated by i’s second label 

erase all vertex labels except the ones of the source 

reinitialize Q with the source 

return x //the current flow is maximum 

Time Efficiency 

The number of augmenting paths needed by the shortest-augmenting-path algorithm 

never exceeds nm/2, where n and m are the number of vertices and edges, respectively. 
Since the time required to find shortest augmenting path by breadth-first search is in 

O(n+m)=O(m) for networks represented by their adjacency lists, the time efficiency of 

the shortest-augmenting-path algorithm is in O(nm
2
) for this representation. 

More efficient algorithms have been found that can run in close to O(nm) time, but these 
algorithms don’t fall into the iterative-improvement paradigm. 

 

 

Analysis    :  The algorithm for Ford-Fulkerson has a while loop which executes for O (E). 

Hence running time of Ford-Fulkerson algorithm is O(EF*) where F* is the maximum flow 

found b algorithm. 

 

 

4. Explain the Maximum Matching in Bipartite Graph algorithm with supporting  

       example (AU MAY 2015) or what is a bipartite graph?is the subset of a bipartite graph 

bipartite?outline the with an example   Nov/Dec 2019,Nov/Dec 2021 

Explain the maximum-bipartite-matching problem with an illustration. (April/ May 2021) 

 

Bipartite Graph:  

The graph G = (V, E) in which the vertex set V is divided into two disjoint sets X and Y in such 

a way that every edge e € E has one end point in X and other end point in Y. 
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For example 

 
Matching: 

A matching M is a subset of edges such that each node in V appears in at most one edge in M. 

In other words matching in a graph is a subset of edges that no two edges share a vertex. 

Two-colorable Graph: 

A graph can be colored with only two colors (i.e. two colorable graph) such that no edge 

connects the same color. The bi-partite graph is 2-colorable. 

Free vertex:  

µ € V is a fee vertex, if no edge from matching M os incident to v (that means if v is not 

matched). 

Alternating path:  

The alternating path P is a path in graph G, such that for every pair of subsequent edges one of 

them is matching pair M and other is not. 

Augmenting path:  

The augmenting path P is a path in graph G, such that it is an alternating path with special 

property that its start and end vertices are free or unmatched. 

Maximum matching or Maximum cardinality matching:  

 It is a matching with largest number of matching edges. 

Maximum matching problem is a problem of finding maximum matching in a 

graph. 

Let us apply iterative-improvement technique to maximum matching problem. 

 Let M be a matching in bipartite graph G. 

 
Here the vertices D, 3, E and 4 are matched and vertices A, 1, B, 2, c, 5 are free or unmatched 

vertices. 

 By adding a pair (A, 2) for matching 

 We get larger matching Ma 
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Something to get larger matching, for inclusion of some pair, we may need removal of existing 

pair. Such a matching adjustment is called augmentation. 

 Following figures illustrate this concept 

 
Thus we have got maximum matching. This is also called as perfect matching because all 

vertices of graph are matched. 

Theorem:  

A matching M is a maximum matching if and only if there exists no augmenting path 

with respect to M. 

Algorithm Maximum Bipartite Matching(G)  

initialize set M of edges // can be the empty set 

initialize queue Q with all the free vertices in V 

while not Empty (Q) do 

w < Front(Q) 

if w ε V then 

for every vertex u adjacent to w do // u must be in U 

if u free then // initialize set M of edges // can be the empty set 

initialize queue Q with all the free vertices in V 

while not Empty (Q) do 

w < Front(Q) 

if w ε V then 

for every vertex u adjacent to w do // u must be in U 

augment 

M< M union (w, u) 

v< w 

while v is labeled do // follow the augmenting path 

u< label of v 

M< M – (v, ) // (v, u) was in pervious M 



CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 4 

 

  

      
  

22 

 V< label of u 

M< M union (v, u) // add the edge to the path 

// start over vertex labels 

reinitialize Q with 

remove  all  

all  the free vertices in V 

break // exit for loop 

else// u is matched 

if (w, u) not in M and u is unlabeled then 

label u with w // represents an edge in E-M 

Enqueue(Q, u) 

// only way for a U vertex to enter the queue 

else // w ƹ U and therefore is matched with v 

V <w’s mate // (w, v) is in M 

Label v with w // represents in M 

Enqueue(Q, v) // only way for a mated v to enter Q 

Return M // maximum matching 

  

Application of Algorithm  

Step 1: 

 
Step 2:  

 
 

Step 3: Augmenting from 2 
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Step 4: Augmenting from 5 

 
Step 5: 

     
 This is also a perfect matching. 

Example :  Apply  the maximum matching algorithm to Following bi-partite graph. 

                                                                                                                                            

 

 

 

Solution: 
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Step 1:                                                                             Step 2:                                                                                         

  

 Step 3:                                                       Step 4:                                                                                         

 

 Step 5:                  Step 6: 

  
 

 

 

 

Step 7: 

 
5. Explain the Stable Marriage Problem with illustrative example(AU MAY 2015) or what is  
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    stable marriage problem? Give the algorithm and analyze it. Nov/Dec 2017,2019 2021,18 apr-

18, (or) Outline the steps in the stable marriage algorithm with an example. Nov/Dec 2021. 

The stable marriage problem is an important algorithmic version of bipartite matching problem. 

The goal of this problem is to find stable matching between two sets (men and women) 

with various preferences to each other. 

 The problem can be stated as follows – 

Consider two sets M={m1, m2,…,mn} of n men and W={w1,w2,…,wn} of n women. Each 

man has a preference list ordering the women as potential marriage partners with no ties 

allowed. Similarly, each woman has a preference list of the men, also with no ties. Then we 

have to find out the marriage matching pair (m, w) whose members are selected from these two 

sets based on their preferences. 

There is a set Y = {m1,…,mn} of n men and a set X = {w1,…,wn} of n women.  Each man has a 

ranking list of the women, and each woman has a ranking list of the men (with no ties in these 

lists).  

A marriage matching M is a set of n pairs (mi, wj). 

A pair (m, w) is said to be a blocking pair for matching M if man m and woman w are not 

matched in M but prefer each other to their mates in M. 

A marriage matching M is called stable if there is no blocking pair for it; otherwise, it’s called 

unstable. 

The stable marriage problem  is to find a stable marriage matching for men’s and women’s 

given preferences. 

An instance of the stable marriage problem can be specified either by two sets of preference 

lists or by a ranking matrix, as in the example below. 

        

   men’s preferences   women’s preferences  

                   1st    2nd   3rd                  1st     2nd    3rd  

           Bob: Lea  Ann  Sue             Ann: Jim  Tom  Bob 

           Jim:  Lea  Sue  Ann                   Lea:  Tom  Bob  Jim 

          Tom:  Sue Lea  Ann                   Sue:  Jim  Tom  Bob 

           

 ranking matrix 

           Ann  Lea  Sue 

    Bob  2,3   1,2   3,3 

    Jim    3,1  1,3   2,1 

   Tom  3,2   2,1   1,2 

 

{(Bob, Ann)  (Jim, Lea)  (Tom, Sue)} is unstable 

{(Bob, Ann)  (Jim, Sue)  (Tom, Lea)} is stable 

 

Freemen: 

Bob, Jim, Tom 

 

Bob proposed to Lea 

Lea accepted 

 

 

 

 

 Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 Ann Lea Sue 
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Freemen: 

Jim, Tom  

 

Jim proposed to Lea 

Lea rejected 

 

 

 

 

 

 

Freemen:  

Jim, Tom 

Jim proposed to Sue 

Sue accepted 

 

 

 

 

 

 

 

 

Freemen: Tom     

Tom proposed To Sue Sue rejected 

 

 

 

 

 

Freemen: 

Tom 

Tom proposed to Lea 

Lea replaced Bob with Tom 

 

 

Freemen: 

Bob  

 

Bob proposed to Ann 

Ann accepted 

 

 

 

The algorithm terminates after no more than n2 iterations with 

 a stable marriage output 

The stable matching produced by the algorithm is always man-optimal: each man gets the 

highest rank woman on his list under any stable marriage.  One can obtain the woman-optimal 

matching by making women propose to men 

A man (woman) optimal matching is unique for a given set of participant preferences 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 

 Ann Lea Sue 

Bob 2,3 1,2 3,3 

Jim 3,1 1,3 2,1 

Tom 3,2 2,1 1,2 
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Algorithm 

Step 1: Initially all the men and all the women are free, but having their preferences list with 

them. 

Step 2:  

Propose: One of the free man m proposes to women w. This woman is normally the 

highest preferred one from his preference list. 

Response: If the woman w is free then she accepts the proposal of matched m. If she is 

not free, she compares the m with her current mate. If she prefers m with current mate 

then she accepts his proposal making former mate free otherwise simply rejects m’s 

proposal. 

Step 3: Finally , returns the matching pairs of (m,w) 

 

 

6. Maximize p=2x+3y+z         Subject to x+y+z<=40 

  2x+y-z>=10 

  -y+z>=10 

            x>=0,y>=0,z>=0   (AU MAY 2015) 

 

How to Solve General Maximization Problems 

General maximization problems are linear programming problems in which you are asked to 

maximize an objective function. It may be non-standard: one or more of the constraints may be a 

constraint. 

Rewrite the following LP problem as a system of linear equations. 

Maximize p = 2x + 3y + z subject to  

x + y + z 40  

2x + y - z 10  

- y + z 10  

x 0, y 0, z 0  

Use slack or surplus variables s, t and u respectively, and type all equations with the variables in the 

order shown above 

The first constraint is x + y + z 40. 

To turn it into an equation, we must add a slack variable s to the left-hand side, getting x + y + z + s 

= 40. 

 The next constraint is 2x + y - z 10, 

and we must subtract the surplus variable t to the left-hand side, getting  

2x + y - z - t = 10. 

The last constraint is - y + z 10, 

and we must subtract the surplus variable u to the left-hand side, getting  

- y + z - u = 10. 

Finally, the objective is p = 2x + 3y + z. 

We must subtract 2x + 3y + z from both sides to get the desired equation:  

-2x - 3y - z + p = 0. 

Step 2: Set up the initial tableau. 

Step 1 We convert the LP problem into a system of linear equations by putting in the slack 

variables and rewriting the objective function:  

x + y + z + s 
      

= 40 

2z + y - z 
  

- t 
    

= 10 

 
- y + z 

    
- u 

  
= 10 

2x 
 

3y 
 

z 
      

+ p = 0 
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Thus, the initial tableau is as follows.  

 

 

 

 x y z s t u p Ans 

    s   

  
1 1 1  1 0 0 0 40 

    t   

  
2 1 -1 0 -1 0 0 10 

   u   

  
0 -1 1 0 0 -1 0 10 

    p   

  
-2 -3 -1 0 0 0 1 0 

 

The current tableau is 

 x y z s t u p Ans 

    s   

  
1 1 1  1 0 0 0 40 

    t   

  
2 1 -1 0 -1 0 0 10 

   u     0 -1 1 0 0 -1 0 10 

    p   

  
-2 -3 -1 0 0 0 1 0 

Reading across the first row (active variable s), we find s = 40/1 = 40. 

  Reading across the second row (active variable t), we find t = 10/(-1) = -10. 

 Reading across the third row (active variable u), we find u = 10/(-1) = -10. 

 Reading across the bottom row (active variable p), we find p = 0/1 = 0 

Since all the other variables are inactive, their values are zero. 

Notice that the values of the surplus variables t and u are currently negative. This is not permitted, 

since all variables are required to be non-negative. This tells us that the current basic solution (x, y, z) 

= (0, 0, 0) is not feasible, (it does not satisfy the second and third constraints). We use asterisks to 

mark the rows corresponding to those negative basic variables:  

 

 x y z s t u p Ans 

    s   

  
1 1 1  1 0 0 0 40 

   * t 

    
2 1 -1 0 -1 0 0 10 

  * u   

  
0 -1 1 0 0 -1 0 10 

    p   

  
-2 -3 -1 0 0 0 1 0 

Our first order of business is to get into the feasible region, or, equivalently, 

Phase I: Get rid of the stars. 

We can (eventually) get rid of all the stars by pivoting one or more times. The only way this differs 

from the procedure for pivoting in standard maximization 

  problems is the way in which we select the pivot column.  

 For standard maximization problems, the pivot column was chosen by selecting the most 

negative number in the bottom row. 

 In Phase I, on the other hand, the pivot column is chosen by selecting the largest positive 

number in the first starred row. 
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Once we have selected the pivot column, we select the actual pivot as usual by using the lowest test 

ratio in the pivot column. (Note: If the lowest ratio occurs both in a starred row and an unstarred 

row, pivot in a starred row rather than the unstarred one.) Thus, in Phase I, we don't worry about 

negative numbers in the bottom row at all (there might not even be any there to begin with). That is 

all there is to Phase I. 

 In the above tableau, the first starred row is Row 2, and the largest positive number it contains 

is its first entry, 2. Thus, we have the following pivot column, colored in green 

 

 

 x y z s t u p Ans 

s 1 1 1 1 0 0 0 40 
Test ratio 40/1 = 

40 

* t 2 1 -1 0 -1 0 0 10 

10/2=5 

(Smallest). 

 

* u 0 -1 1 0 0 -1 0 10 

p -2 -3 -1 0 0 0 1 0 

This is the first starred row. 

To select the pivot, identify the smallest test ratio: Test ratio 40/1 = 40 

Test Ratio: 10/2 = 5 (Smallest). 

Thus, we pivot on the "2" in Row 2, and we get the following tableau 

 

 

 x y z s t u p Ans 

s 0 1 3 2 1 0 0 70 

X 2 1 -1 0 -1 0 0 10 

* u 0 -1 1 0 0 -1 0 10 

p 0 -2 -2 0 -1 0 1 10 

 

 

Q What happened to the star in Row 2?  

A It is gone, because the basic solution we now get from Row 2 is  

x = 10/2 = 5, 

which is no longer negative! Thus, we have eliminated one of the stars. 

 

Since there is still one starred row left, we are not done with Phase I.  

From the above curent tableau  

 

Since Row 3 is the only starred row (and so it is the first starred row) we locate the largest positive 

number in Row 3 (it is the "1" in the z-column), giving us the pivot column (shown in red): 

 

 

 x y z s t u p Ans 

s 0 1 3 2 1 0 0 70 Test Ratio: 70/3 

X 2 1 -1 0 -1 0 0 10 

* u 0 -1 1 0 0 -1 0 10 
Test Ratio: 10/1 

 

p 0 -2 -2 0 -1 0 1 10 

Since the smallest test ratio is in the u-row (Row 3), we select the entry in Row 3 

Column 3 as pivot. Using the correct pivot, now obtain the second tableau. 
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 x y z s t u p Ans 

s 0 1 3 2 1 0 0 70 R1-3R3 

X 2 1 -1 0 -1 0 0 10 R2+3R3 

* u 0 -1 1 0 0 -1 0 10 

p 0 -2 -2 0 -1 0 1 10 R4+2R3 

This gives 
  

 

  

The basic solution we now get from Row 3 is z = 10/1 = 10, 

which is no longer negative, so the star disappears.  

Q Ok the stars are gone. Now what?  

A Since there are no more stars, we are now in the feasible region, and can proceed 

to:  

Phase II: Do the simplex method as for standard maximization problems. 

Revert back to selecting the pivot column using the most negative number in the 

bottom row (excluding the Answer column). Continue pivoting until there are no 

negative numbers in the bottom row (with the possible exception of the Answer 

column).  

If you look at the tableau you just obtained, you will see that there is still a negative 

number there: the -4 in the "y"-column, (press the above Help button to see the 

current tableau if you do not have it) you will now need to select a pivot in that 

column in order to pass to the next tableau. Using our usual rule for selecting a pivot 

in a given column, we see that the pivot is the "4" in Row 1 Column 2, so we pivot 

on that getting 

 

 

 

 x y z s t u p Ans 

Y 0 4 0 2 1 3 0 40 

X 2 0 0 0 -1 -1 0 20 

Z 0 0 4 2 1 -1 0 80 

p 0 0 0 0 0 1 1 70 

        

 

7.  (i) Summarize the Simplex method.(8) Apr-18 

 

Step 0 [Initialization] Present a given LP problem in standard form and set up initial tableau. 

Step 1 [Optimality test] If all entries in the objective row are nonnegative then stop: the 

     Tableaure presents an optimal solution. 

Step 2 [Find entering variable] Select the most negative entry in the objective row.  

          Mark its column to indicate the entering variable and the pivot column. 

Step 3 [Find departing (leaving) variable] For each positive entry in the pivot column,  Calculate        

the θ-ratio by dividing that row's entry in the rightmost column (solution) by its entry in the 

pivot column. 

 x y z s t u p Ans 

s 0 4 0 2 1 3 0 40 

X 2 0 0 0 -1 -1 0 20 

Z 0 -1 1 0 0 -1 0 10 

p 0 -4 0 0 -1 -2 1 30 
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 (If there are no positive entries in the pivot column then stop: the problem isunbounded.)  

 

 

Find the row with the smallest θ-

ratio, mark this row to indicate the departingvariable and the pivot row. 

Step 4 [Form the next tableau] Divide all the entries in the pivot row by its entry in the  

          

Pivot column. Subtract from each of the other rows, including the objective row, the new pivot 

row multiplied by the entry in the pivot column of the row in question. Replace the label of 

the pivot row by the variable's name of the pivot column and go back to Step 1. 

 

Standard form of LP problem 

Must be a maximization problem 

All constraints (except the nonnegativity constraints) must be in the form of linearEquation

sAll the variables must be required to be nonnegative 

Thus, the general linear programming problem in standardform with m constraints 

and n unknowns (n ≥ m) is 

 

Maximize c1 x1 + ...+ cn xn 

Subject to ai 1x1+ ...+ ain xn = bi , i = 1,...,m,x1 ≥ 0, ... , xn ≥ 0 

 

Example 
maximize 3x + 5y maximize 3x + 5y + 0u + 0vsubject to

 x + y ≤ 4 subject to x + y + u =4  

x + 3y ≤ 6 x + 3y + v =6 

x≥0, y≥0 x≥0, y≥0, u≥0, v≥0 

 

Variables u and v, transforming inequality constraints into equality constrains, are called sl

ackvariables 

 

 (ii) State and Prove Maximum Flow Min cut Theorem. (or) Elaborate the maximum flow 

problem with an example and relevant diagrams (8) (Nov/Dec 2021) 
 

Maximum Flow Problem 
Problem of maximizing the flow of a material through a transportation network (e.g., 

pipeline system, communications or transportation networks) 

Formally represented by a connected weighted digraph with n vertices numbered from 1 to n 

with the following properties:  

• Contains exactly one vertex with no entering edges, called the source (numbered 1) 

• Contains exactly one vertex with no leaving edges, called the sink (numbered n) 

Has positive integer weight uij on each directed edge (i.j), called theedge capacity, 

    indicating the upper bound on the amount of the material that can be sent from i to j through 

this edge. 

A digraph satisfying these properties is called a flow network or simply a network 

Flow value and Maximum Flow Problem 

Since no material can be lost or added to by going through intermediate vertices of the network,  

The total amount of the material leaving the source must end up at the sink: 

∑ x1j = ∑ xjn 

j: (1,j) є E j: (j,n) є E 

The value of the flow is defined as the total outflow from the source (= the total inflow into 

thesink). The maximum flow problem is to find a flow of the largest value (maximum flow) for a

 givennetwork. 
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Max-Flow Min-Cut Theorem 

1. The value of maximum flow in a network is equal to the capacity of its minimum cut 

2. The shortest augmenting path algorithm yields both a maximum flow and a minimum cut: 

Maximum flow is the final flow produced by the algorithm 

Minimum cut is formed by all the edges from the labeled vertices to unlabeledvertices on t

he last iteration of the algorithm. 

All the edges from the labeled to unlabeled vertices are full, i.e., their flow amounts 

re equal to the edge capacities, while all the edges from the unlabeled to labeled 

vertices, if any, have zero flow amounts on them. 

 

PART-A 

32. What is state space tree? 
Backtracking and branch bound are based on the construction of a state space tree, whose nodes 

reflect specific choices made for a solution’s component .Its root represents an initial state before 

the search for a solution begins. The nodes of the first level the tree represent the made for the first 

component of solution, the nodes of the second evel represent the Choices for the second 

components & so on 

 

33. State Extreme point theorem. 

Any linear programming problem with a nonempty bounded feasible region has an optimal 

solution; moreover, an optimal solution can always be found at an extreme point of the problem’s 

feasible region. 

Extreme point theorem states that if S is convex and compact in a locally convex space, then S 

is the closed convex hull of its extreme points: In particular, such a set has extreme points. Convex 

set has its extreme points at the boundary. Extreme points should be the end points of the line 

connecting any two points of convex set. 

 

34. Define the iterative improvement technique 
Greedy techniques iteratively construct an optimal solution by building optimal solutions from 

smaller problems. Iterative improvement techniques build an optimal solution by iterative refinement 

of a feasible solution for the complete problem.  

  

Feasible solutions are solutions that satisfy the constraints of the problem, for example using the 

denominations in the making change problem.  

  

The objective function is the function that problem seeks to maximize or minimize.  

  

Iterative improvement is frequently used in numerical problems, for example root finding or finding 

the maximum of a function. We will concentrate on iterative improve to graph problems.  

  

Iterative improvements have difficulties: 

1. Finding the initial solution (guess to the solution) can be easy, for example the empty set, or on the 

other hand it can be difficult. 

2. The algorithm for refinements the guess may be difficult. The refinement must remain feasible and 

improve the objective function. Meaning they should not jump around and possibly diverge from the 

optimal solution.  

3. The refinement may find a local optimal solution but not the global optimal solution, for example 

find the maximum by always going up hill.  

 

IMPORTANT QUESTION 

UNIT-4(NEW SYLLABUS) 

PART-A 
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1. What is feasible solution and feasible region? Define optimal solution. 

2. When the feasible region in linear programming becomes unbounded? 

3. Define extreme point theorem. 

4. What are the requirements for linear programming problem? 

5. Write the general linear programming problem in standard form. 

6. What is basic and non basic solution? 

7. Define objective row. 

8. Define maximum flow problem. 

9. Define flow network. 

10. What is flow conservation requirement? 

11. Define Max-Flow Min-Cut Theorem. 

12. Define preflow. 

13. What is maximum cardinality matching? 

14. Define bipartite graph 

15. Define stable marriage problem. 

16. What is iterative improvement method? 

17. Enlist various applications of iterative improvement   method? 

18. What is linear programming problem? 

19. What is bipartite graph? Colorable graph? 

20. Wat is maximum cardinality matching? Matching problem? 

21. What is entering variable? AND what is departing variable  

 

PART – B 

1.Solve the following linear programming problem geometrically 

Maximize 3x + y 

Subject to – x + y ≤ 1 

2x + y ≤ 4 

x ≥ 0,y ≥ 0 

2.Trace the simplex method on the following problem. 

Maximize p=2x - 3y + 4z 

Subject to 4x - 3y + z ≤ 3 

x + y + z ≤ 10 

2x + y – z ≤ 10 where x, y and z are non negative.  ≤ ≥ 

3.Trace the following non-standard problem using simplex method. 

Maximize  p = 2x - 3y + 4z 

Subject to  4x - 3y + z ≤ 3 

x + y – z ≥ 5 

x ≥ 0, y ≥ 0, z ≥ 0 

4.Apply the shortest-augmenting-path algorithm to find a maximum flow and a minimum cut in the    

   following networks. 

 
 5.Explain the maximum flow problem in detail with example.  Nov/Dec 2021 

 6.Explain the stable marriage problem with example. 

 

ANNA UNIVERSITY APRIL/MAY 2015 
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Part-A 

1. What do you mean by perfect matching in bipartite graph? Refer Part A  Q. No. 26 

 2. Define flow cut  Refer Part A  – Q. No. 27 

 

Part-B 

1.a(i)Maximize p=2x+3y+z 

      Subject to x+y+z<=40 

2x+y-z>=10 

-y+z>=10 

x>=0,y>=0,z>=0   Refer Part B – Q. No. 5 

      (ii) Write down the optimality condition and algorithmic implementation for finding M-  

          augmentating  paths in bipartite graphs Refer Part B – Q. No. 3 

    b. Briefly describe on the stable marriage problem Refer Part B – Q. No. 4 

 

ANNA UNIVERSITY NOV/DEC 2015 

 

PART-A 

1. Determine the dual linear program for the following LP Refer Part A  Q. No. 19 

2. Determine Network Flow and cut Refer Part A  Q. No. 27 

 

PART-B 

 

12.a.(i) use simplex to solve the farmers problem Refer Part B  – Q. No. 3 

        (ii) Write the procedure to initialize simplex which determine if a linear simplex which determines  

            if a linear program is feasible or not? Refer Part B  – Q. No. 3 

b.(i) illustrate the working of the maximum matching algorithm on the following weighted tree 

 

 
 

     (ii) Explain max-Flow problem (4) Refer Part B – Q. No.4 

   

 

ANNA UNIVERSITY APRIL/MAY 2016 
 

PART-A 

 

1. What is state space tree? APRIL/MAY 2016 

2. State Extreme point theorem. APRIL/MAY 2016 

 

PART-B 
 

1.  (a) (i) Summarize the Simplex method.8 APRIL/MAY 2016 

 (ii) State and Prove Maximum Flow Min cut Theorem. (8) APRIL/MAY 2016 

OR 
(b) Apply the shortest Augmenting Path algorithm to the network shown below. (16) 

APRIL/MAY 2016 
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ANNA UNIVERSITY NOV/DEC 2016 
 

PART-A 

 

1. Define the iterative improvement technique. NOV/DEC 2016 

2. what is maximum cardinality matching? NOV/DEC 2016 

 

PART-B 

1. a. (i) State and prove Max-Flow Min-Cut Theorem. NOV/DEC 2016 

           (ii)Summarize the steps of the simplex method.(16) NOV/DEC 2016 

    

 b. (i) Explain briefly about Stable Marriage Problem.(10) NOV/DEC 2016 

 (ii) Determine the Time-efficiency class of the stable marriage algorithm.(6) NOV/DEC 2016 

 

 

ANNA UNIVERSITY APRIL/MAY 2017 

PART-A 

 

1. What do you mean by perfect matching in bipartite graph? APRIL/MAY 2017 

2. State: Planar coloring graph problem. APRIL/MAY 2017 

 

PART-B 

1. Describe in detail the simplex algorithm  method  APRIL/MAY 2017 

2. Explain KMP string matching algorithm for finding a pattern on a text and analyze the  

    algorithm APRIL/MAY 2017 

 

ANNA UNIVERSITY NOV/DEC 2017 
 

PART-A 

 

1. What are Bipartite graphs. NOV/DEC 2017 

2.  State Extreme Point theorem. NOV/DEC 2017 
 

PART-B 

1. List the steps of Simplex Method and give the efficiency of same. NOV/DEC 2017 

2. What is Stable marriage problem? Give the algorithm and analyse it NOV/DEC 2017 
 

ANNA UNIVERSITY APRIL/MAY 2018 

PART-A 

 

1. How is a transportation network represented? Refer Q.No:28 

2. What is meant by maximum cardinality matching? Refer Q.No:22 
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PART-B 

1. Give the summary of the simplex method. Refer Q.No:7 

2. Prove that the stable marriage algorithm terminates after no more than n2 iterations with a stable 

marriage output. Refer Q.No:5 

 

 

ANNA UNIVERSITY NOV/DEC 2018 
 

PART-A 

 

1. Describe iterative improvement technique. Refer Q.No:17 

2. What is solution space? Give an example. Refer Q.No:29 
 

PART-B 
 

1. Illustrate the steps of the simplex methods with an example. (13) Refer Q.No:1 

2. Write the stable marriage algorithm and trace it with an instance. Analyz1e its running time 

complexity. (13) Refer Q.No:5 

 

ANNA UNIVERSITY APRIL/MAY 2019 

PART-A 

 

1. State   the principle of duality? Refer Q.No.31 

2. Define the capacity constraint in the context of maximum flow problem? Refer Q.No.30 

 

PART-B 

1. Determine the max-flow in the following network. Refer Q.No.2 

 

 
 

2. Solve the following set of equations using simplex algorithm: Refer Q.No.1.A 

Maximize:18 x1 +12.5 x2 

Subject to :x1 + x2 <= 20 

  x1<=12 

  x2<=16 

  x1,x2>=0 

 

ANNA UNIVERSITY NOV/DEC 2019 
 

PART-A 

1 .  When a linear program is said to be unbounded? Refer Q.No.5 

2. What is a residual network in the context of flow networks? Refer Q.No.27 

PART-B 
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1.what is iterative improvement? Elaborate the steps in the simplex method with an example(13) 

Refer Q.No.1 

2 (i) what is a bipartite graph? Is the subset of a bipartite graph bipartite? Outline the  with an 

example. Refer Q.No.4 

(ii) Outline the stable marriage problem with an example.(13) Refer Q.No.5 

ANNA UNIVERSITY APRIL/MAY 2021 

PART-A 

 

1.  What are the essential properties of a flow graph? Refer  Q.No.9 

2.  What is meant by iterative improvement technique? Refer  Q.No.17 

PART-B 

1.a) i) Find a stable marriage matching for the instance defined by the following ranking matrix :    

Refer  Q.No.5 

(ii) Determine the time efficiency of the above algorithm in the worst case. 

 
 

b) (i) Advertising alternatives for a company include television, radio and newspaper. The table 

below shows the costs and estimates of audience coverage for each types of media.  

 
The newspaper limits the number of weekly advertisements form a single company to ten. Moreover 

to balance the advertising among the three types of media, no more than half of the total number of 

advertisements should occur on the radio, and at least 10% should occur on television. The weekly 

advertising budget is $ 18,200. How many advertisements should run in each of the three types of 

media to maximize the total audience? Solve the problem using simplex method. Refer Q.No.1 

 

PART C 

(i) Explain the maximum-bipartite-matching problem with an illustration. Refer  Q.No.4 

 

ANNA UNIVERSITY NOV/DEC 2021 

PART-A 

1 .  Outline the steps in iterative improvement. Refer Q. No.17 

2 .  Define a bipartite graph. Refer  Q.No.14 

PART-B 
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1 .  Elaborate the maximum flow problem with an example and relevant diagrams Refer Q.No. 7 

2 .  Outline the steps in the stable marriage algorithm with an example. Refer  Q.No.5 
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UNIT II 

BRUTE FORCE AND DIVIDE-AND-CONQUER 

Brute Force – Computing an – String Matching - Closest-Pair and Convex-Hull Problems - 

Exhaustive Search - Travelling Salesman Problem - Knapsack Problem - Assignment problem. 

Divide and Conquer Methodology – Binary Search – Merge sort – Quick sort – Heap Sort - 

Multiplication of Large Integers – Closest-Pair and Convex - Hull Problems. 

 

PART A 

1. Define Brute Force. 

Brute Force is a straightforward approach to solve a problem, which is directly based on the problem 

statement and definition of the concepts. Brute Force strategy is one of the easiest approach. 

 

2. What are the types of Brute Force Algorithm? 

 There are two types of Brute force algorithm. They are Consecutive integer checking algorithm for 

computing the greatest common  divisor of two integer[gcd(m,n)] Definition based algorithm for 

matrix multiplication. 

 

3. What are the Advantages of Brute Force Approach?Advantages 

It is applicable to a variety of problems.A brute Force algorithm can be useful for solving small size 

instances of a problem. 

A brute Force algorithm can serve an important theoretical or educational  purpose. 

The brute force approach provides reasonable algorithms of atleast some  practical value with no 

limitation on instance size for sorting, searching, matrix multiplication and string matching problem. 

 

4. What is Closest-Pair Problem? (Apr/May-2017) 
The closest-pair problem calls for finding the two closest points in a set of n points.  

It is the simplest of a variety of problems in computational geometry that deals with proximity of 

points in the plane or higher-dimensional spaces.  

 

5. What is meant by Convex? 

A set of points (finite or infinite) in the plane is called convex if for any two points p and q in the set, 

the entire line segment with the endpoints at p and q belongs to the set. 

 

6. What is meant by convex hull?or state the convex hull problem. Nov/Dec 2019 

The convex hull of a set S of points is the smallest convex set containing S. (The “smallest” 

requirement means that the convex hull of S must be a subset of any convex set containing S.) 

 

7. Define exhaustive search. 

An exhaustive search, also known as generate and test, is a very general problem-solving 

technique that consists of systematically enumerating all possible candidates for the solution and 

checking whether each candidate satisfies the problem's statement. 

 

8. What is Travelling Salesman Problem? 
The Travelling Salesman Problem (TSP) is an NP-hard problem in combinatorial optimization 

studied in operations research and theoretical computer science.  

Given a list of cities and their pairwise distances, the task is to find a shortest possible tour that visits 

each city exactly once. 

9. What is knapsack? Or outline the knapsack problem    Nov/Dec 2019 

The knapsack problem, another well-known NP-hard problem.The Knapsack problem is, given n 

items of known weights w1, . . . , wn and values v1, . . . , vn and a knapsack of weight capacity W, 

find the most valuable subset of the items that fits into the knapsack. 

10.What is assignment problem? 

The assignment problem is one of the fundamental combinatorial optimization problems in the 
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branch of optimization or operations research in mathematics.  

It consists of finding a maximum weight matching in a weighted bipartite graph. 

 

11. Define the divide and conquer method. Or Write the general divide and conquer approach to 

solve a problem. April/May 2021 

Divide & conquer technique is a top-down approach to solve a problem. 

The algorithm which follows divide and conquer technique involves 3 steps: 

Divide the original problem into a set of sub problems. 

Conquer (or Solve) every sub-problem individually, recursive. 

Combine the solutions of these sub problems to get the solution of original problem. 

 

12. What is the binary search? 

If ‘q’ is always chosen such that ‘aq’ is the middle element  

(that is, q = [(n+1)/2)], then the resulting search algorithm is known as binary search. 

 

13. What is the time complexity of Binary search?  June 2011 & 12 

 

14. Define external path length? 

The external path length E, is defines analogously as sum of the distance of all external 

nodes from the root. 

 

15. Define internal path length. 

The internal path length ‘I’ is the sum of the distances of all internal nodes from the root. 

 

16. Is insertion sort better than the merge sort? 

Insertion sort works exceedingly fast on arrays of less then 16 elements, though for large 

‘n’ its computing time is O (n
2
). 

 

17. Give the recurrence relation of divide-and-conquer? 

The recurrence relation is 

                   T( n) =  g(n)   n  is small 

                   T(n1) + T(n2) + T(nk) + f(n)     otherwise 

 

Where T(n) is the time for DAndC on any input of size n and g(n) is the time to compute the 

answer directly for small inputs.  

The function f(n) is the time for dividing P and combining the solutions to subproblems.  

 

18. What are internal nodes? 

The circular node is called the internal nodes. 

 

19.Give the recurrence equation for the worst case behavior ofmerge sort?                                                                 

The recurrence equation for the worst case behavior of merge   

sort is T(n) = 2T(n/2) + cn      for n>1, c is a constant 

         Total number of comparison required by the merge sort is Θ(n logn) 

 

20. Find the number of comparisons made by the sequential search in the worst case and best  

      case? 

Successful searches unsuccessful searches 

Θ (1) Θ (log n) Θ (log n) Θ (log n) 

Best Average Worst Best ,Average, Worst 
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Worst case: The algorithm makes the largest number of key comparisons among all possible  

input of size n. Cworst(n)=n 

Best Case: The best case inputs will be lists of size n with their first element equal to search 

key. Cbest(n)=1 

 

21. What are the objectives of sorting algorithms?  

      A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most-used  

      orders are numerical order and lexicographical order. 

       Efficient sorting is important for optimizing the use of other algorithms (such as search and  

      merge algorithms) that require sorted lists to work correctly; 

       More formally, the output must satisfy two conditions:The output is in non-decreasing order  

      (each element is no smaller than the previous element according to the desired total order) 

      The output is a permutation (reordering) of the input.  

 

22. What do you meant by Divide and conquer strategy?    May 2013 

        Divide & conquer technique is a top-down approach to solve a problem.The algorithm which     

        follows divide and conquer technique involves 3 steps: 

 Divide the original problem into a set of sub problems. 

 Conquer (or Solve) every sub-problem individually, recursive. 

 Combine the solutions of these sub problems to get the solution of original problem. 

 

23. What are the merits of binary search? 

A binary search or half-interval search algorithm finds the position of a specified value (the 

input "key") within a sorted array.  

In each step, the algorithm compares the input key value with the key value of the middle 

element of the array.  

A binary search halves the number of items to check with each iteration, so locating an item 

(or determining its absence) takes logarithmic time It is faster than the sequential search. 

It requires lesser number of key comparisons than the sequential search. 

 

24. Is merge sort stable sorting algorithm? 

Yes, merge sort is the stable sorting algorithm.  

A sorting algorithm is said to be stable if it preserves the ordering of similar elements after 

applying sorting method.  

And merge sort is a method which preserves this kind of ordering. Hence merge sort is a 

stable sorting algorithm. 

 

25. Give efficiency analysis of divide and conquer? 

The efficiency of divide and conquer algorithms is given by recurrences of the form.  

 

 T(n) =     T(n)      n=1 

                          aT(n/b) + f(n)  n>1 

Where a and b are known constants. We assume that T(1)  is known and n is a power of b ( n=bk). 

 

26. What is the idea behind binary search?  

A binary search or half-interval search algorithm finds the position of a specified value (the 

input "key") within a sorted array.  

In each step, the algorithm compares the input key value with the key value of the middle 

element of the array.  

If the keys match, then a matching element has been found so its index, or position, is 

returned.  

Otherwise, if the sought key is less than the middle element's key, then the algorithm repeats 

its action on the sub-array to the left of the middle element or, if the input key is greater, on 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/List_(computing)
http://en.wikipedia.org/wiki/Total_order
http://en.wikipedia.org/wiki/Lexicographical_order
http://en.wikipedia.org/wiki/Sorting
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Merge_algorithm
http://en.wikipedia.org/wiki/Total_order
http://en.wikipedia.org/wiki/Permutation
file://///wiki/Algorithm
file://///wiki/Sorted_array
file://///wiki/Logarithmic_time
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Sorted_array
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the sub-array to the right.  

If the remaining array to be searched is reduced to zero, then the key cannot be found in the 

array and a special "Not found" indication is returned. 

 

27. Give the time efficiency and drawback of merge sort  

      algorithm?                                                                   Dec 2005 

 
   Refer Class Notes 

 

 28. What is the difference between quick sort and merge sort?    May 2013  

 

 

29. What is the difference between sequential and binary search     Apr 2013  

 

30. What is the necessary precondition for the binary search ? 

For the binary search the list should be sorted either in ascending or descending order 

 

31. List out two drawbacks of binary search algorithm.      Dec 2007 

In binary search the elements have to be arranged either in ascending or descending order 

Each time the mid elements has to be computed in order to partition the list in two sub lists 

 

Sequential technique binary search technique 

This is the simple technique of searching an 

element 

This is the efficient technique of searching an 

element 

This technique does not require the list to be 

sorted 

This technique require the list to be sorted. Then 

only this method is applicable 

The worst case time complexity of this 

technique is O(n) 

The worst case time complexity of this 

technique is O(log n) 

Every element of the list may get compared with 

the key element. 

Only the mid element of the list is compared 

with key element. 

Sequential technique binary search technique 

This is the simple technique of searching an 

element 

This is the efficient technique of searching an 

element 

This technique does not require the list to be 

sorted 

This technique require the list to be sorted. Then 

only this method is applicable 

The worst case time complexity of this technique 

is O(n) 

The worst case time complexity of this technique 

is O(log n) 

Every element of the list may get compared with 

the key element. 

Only the mid element of the list is compared with 

key element. 
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32. Give the control abstraction for divide and conquer.    Dec 2012 

divide_and_conquer ( P ) 

{ 

if ( small ( P ) ) // P is very small so that a solution is trivial 

return solution ( n ); 

divide the problem P into k instances P1, P2, ..., Pk; 

return ( combine ( divide_and_conquer ( P1 ), 

divide_and_conquer ( P2 ), 

... 

divide_and_conquer ( Pk ) ) ); 

} 

The solution to the above problem is described by the recurrence,  

   assuming size of P denoted by n 

 
where f(n) is the time to divide n elements and to combine their solution. 

 

33. What is called substitution method?      Jun 2010 

A substitution method is one, in which we guess a bound and then use mathematical 

induction to prove our guess correct.  

It is basically two step process: 

Step1: Guess the form of the Solution. 

Step2: Prove your guess is correct by using Mathematical Induction. 

Example 1.  

Solve the following recurrence by using substitution method. 

 
Solution:  

Step1: The given recurrence is quite similar with that of MERGESORT, you guess the 

solution is  

 
Or 

 
Step2: Now we use mathematical Induction. 

Here our guess does not hold for n=1 because 
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Now for n=2  

 

34. What is called optimal solution?             Jun 2010 

A feasible solution that maximizes the given objective function is called as optimal solution. 

 

35. What do you mean by divide and conquer strategy?   Jun 2013 Refer Part A – Q. No. 11 

 

36. State the principle of substitution method?          Jun 2014    Refer Part A – Q. No. 33 

 

37. Define feasible and  optimal solution?                   Jun 2014 

Given n inputs form a subset such that it satisfies some given constraints then such a subset is 

called feasible solution.  

A feasible solution that maximizes the given objective function is called as optimal solution 

 

38. Trace the operation of binary search algorithm for the input – 15, -6, 0, 7, 9, 23, 54, 82, 101,  

      112, 125, 131, 142, 151, if you   are searching for  the element 9. Dec 2010 

 

Input :  

 

15   -6   0   7   9   23   54   82   101   112   125   131   142   151 

   

  0    1    2   3   4    5    6     7    8        9     10      11    12     13  

  

Iteration 0: 

 Left = 0 

 Right = 13 

 Mid = (Left + Right) / 2 

        = (0 + 13) / 2 

 Mid = 6 

 Midelement = 54 

 Search key = 9 

Since 9 < 54, search the element 9 in the left of midelement 54. 

Iteration 1: 

 Left = 0 

 Right = 5 

 Mid = (Left + Right) / 2 

        = (0 + 5) / 2 

 Mid = 2 

 Midelement = 0 

 Search key = 9 

Since 9 > 0, search the element 9 in the right of midelement 0. 

Iteration 2: 
 Left = 3 
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 Right = 4 

 Mid = (Left + Right) / 2 

        = (3 + 4) / 2 

 Mid = 3 

 Midelement = 7 

 Search key = 9 

Since 9 > 7, search the element 9 in the right of midelement 7. 

 Therefore 9 is found in the position 4. 

 

39.Design  a brute force algorithm for computing the value of a polynomial (April/may 2015) 

    Problem: Find the value of  polynomial                                      

          p(x) = anx
n + an-1x

n-1 +… + a1x
1 + a0      at a point x = x0  

Algorithm:  

 x := x0 

 p := 0.0 

 for i := n down to 0 do 

 power := 1 

 for  j :=  power * x 

          p := p + a:= 1 to i do 

         power [i] * power  

         return p  

 Efficiency: (n2)  

 

40. Derive complexity of binary search algorithm. (AU april/may 2015) 

      Worst Case Analysis 

The worst case includes all arrays that do not contain a search key. 

The recurrence relation for  

Cworst(n) =   Cworst (n/2)  +   1,    for n > 1 ----- (1) 

 

          Time required to                one comparison  

        compare  left sublist  made with middle element  

         or right sub list   

 

Cworst(1) = 1 -------- ( 2 ) 

The above recurrence relation can be solved further .  

assume  n=2k the equation ( 1 ) becomes  

    

Cworst(2
k) = Cworst(2 k /2)+ 1 

   Cworst(2
k) = Cworst(2 k-1)+ 1 ------ ( 3 ) 

Using backward substation method , we can substitute  

   Cworst(2
k-1) = Cworst(2

k-2)+ 1 

 

Then equation  (3)   becomes 

   Cworst(2
k) = [Cworst( 2 k-2)+ 1] + 1 

   Cworst(2
k) = Cworst( 2 k-2)+ 2 

Then  

   Cworst(2
k) = [Cworst( 2 k-3)+1]+ 2 

   Cworst(2
k) =Cworst( 2 k-3)+3 

     --- 

     --- 

   Cworst(2
k) =Cworst( 2 k-k)+k 

   Cworst(2
k) =Cworst( 2 0)+k 

   Cworst(2
k) =Cworst( 1 )+k  ----- (4) 
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But as per equation (2 )  

as we have assumed n = 2k taking logarithm (base 2 )on both sides  

log 2 n = log 2 2k 

log 2 n = k. log 2 2 

log 2 n = k(1) therefore log 2 2 =1 

therefore k = log 2 n 

   Cworst(1) = 1 the we get equation ( 4 ) 

   Cworst(2
k) =  1 + k      

   Cworst(n) =  1  + log2n ----- (2) 

Cworst(n) =   log2n      for n>1 

The worst case time complexity of binary search is Θ(log2n) 

As  Cworst(n) =   log2n + 1   

we can verify equation ( 1) with this value. 

Cworst(n) =   Cworst[(n/2)]  +   1  

In equation (1) put n = 2i 

L.H.S  

  Cworst(n)     = log2n + 1 

         = log2(2i )+ 1 

    = log 2 2 + log 2i + 1 

    = 1+ log 2i + 1 

    = 2 + log 2i 

Cworst(n)     =2 + log 2i 

 R.H.S  

  Cworst(n/2)+1 = log 2(2i/2 )+ 1 

        = log 2i + 1 

        = log 2 2i + 1+ 1 

        = 2 + log 2i 

Cworst(n/2) =2 + log 2i 

    L.H.S = R.H.S 

Hence 

  Cworst(n) = log 2n + 1 and  

  Cworst(i) = log 2i + 1 are same 

Hence 

  Cworst(n) = Ө(log n ) 

 

41. Give the General plan divide and conquer method.      Nov/Dec 2017 

Write the general divide and conquer approach to solve a problem. April/May 2021 

A divide and conquer algorithm works by recursively breaking down a problem into twoor 

more subproblems of the same (or related) type (divide), until these become simple enough t

obe solved directly (conquer).Divideandconquer algorithms work according to the following g
eneral plan: 

 A problem is divided into several subproblems of the same type, ideally of about equal size. 

 The subproblems are solved (typically recursively, though sometimes a different algorithm 

is employed, especially when subproblems become small enough). 

 If necessary, the solutions to the subproblems are combined to get a solution to the original 

       problem. 

Example: Merge sort, Quick sort, Binary search, Multiplication of Large Integers  

   And  Strassen’s Matrix Multiplication. 

 

42.write an algorithm for brute force closest-pair problem 
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43.Prove that any comparison sort algorithm requires Ω ( n log n) comparisons in the worst 

     case. 

The author states that any comparison sort algorithm requires Ω(nlgn) comparisons in the worst 

case. Taking the bubble sort algorithm as an example, in the worst case we have an upper bound 

O(n^2). Omega represents the lower or least bound therefore wouldn't the lower bound of a worst 

case be Ω(n^2) as well? How would a bubble sort have a lower bound, such as the suggested 

Ω(nlgn), rather than n^2 in a worst case performance? In the worst case performance bubble sort 

can't take AT LEAST nlgn. 

 

44.Give the mathematical notation to determine if a convex direction is towards left or right  

     and write   the algorithm 
It is not difficult to prove the geometrically obvious fact that the leftmost point p1 and the 

rightmost point pn are two distinct extreme points of the set’s convex hull (Figure 5.8).  

Let p1 pn be the straight line through point’s p1 and pn directed from p1to pn.  

This line separates the points of S into two sets:  

S1 is the set of points to the left of this line, and S2 is the set of points to the right of this 

line. We say that point q3 is to the left of the line  q1q2 directed from point q1 to point q2 if q1 q2 

q3 forms a counterclockwise cycle. 

 Later, we cite an analytical way to check this condition, based on checking the sign of a 

determinant formed by the coordinates of the three points. 

The points of S on the line p1 pn, other than p1 and  pn, cannot be extreme points of the 

convex hull and hence are excluded from further consideration. 

 

T (n) = 2T (n/2) + f (n),    where f (n) ∈ Ө(n). 

 

 

 

 

 

 

 

 

 

 

Fig Upper and lower hulls of a set of points 

 

45. Devise an algorithm to make for 1655 using the Greedy strategy. The coins available are 

{1000,500,100,50,20,10,5} 

 

Algorithm:  

while( there are more coins and the instance is not solved)  
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{ 

 grab the largest remaining coin; // selection procedure if(adding the coin makes the change 

exceed the amount owed )  

reject the coin; // feasibility check 

else 

 add the coin to the change; 

 if( the total value of the change equals the amount owed ) //  

solution check the instance is solved; 

 } 

 Solution for the given instance 1655 = 1000 + 500 +100 + 50 + 5. 

 

46. Write the advantage of insertion sort ? 

 The main advantage of the insertion sort is its simplicity.  

 It also exhibits a good performance when dealing with a small list. 

 The insertion sort is an in-place sorting algorithm so the space requirement is minimal.  

 

47. Write the disadvantage of insertion sort ? 

The disadvantage of the insertion sort is that it does not perform as well as other, better 

sorting algorithms.  

With n-squared steps required for every n element to be sorted, the insertion sort does not 

deal well with a huge list.  

Therefore, the insertion sort is particularly useful only when sorting a list of few items. 

 

 

48. What is an exhaustive search ?April/May 2018 
Exhaustive search is simply a brute-force approach to combinatorial problems.  

It suggests generating each and every element of the problem domain, selecting those of 

them that satisfy all the constraints, and then finding a desired element. 

 

49. State Master's theorem. April/May 2018 

I f f(n)€Ө(nd) with d≥0 in recurrence equat ion then  

 
 

 

 

 

50. What are the differences between dynamic programming and divide and 

conquer approaches? Nov/Dec 2018 

Both techniques split their input into parts, find sub solutions to the parts, and synthesize larger 

solutions from smaller ones. 

Divide and conquer splits input at pre-specified deterministic points(eg., always in the middle) 

Dynamic programming splits its every possible split rather than at pre-specified points. After 

trying all split points, it determines which split point is optimal. 

 

51.Give an example for Hamiltonian circuit. Nov/Dec 2018 

 complete graph with more than two vertices is Hamiltonian 

T(n)€  

 Ө(n d)  if  a< b d  

T(n)€    Ө(n d logn) if  a= b d  

 Ө(n l o g b a ) if  a> b d  

https://en.wikipedia.org/wiki/Complete_graph
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 cycle graph is Hamiltonian 

 tournament has an odd number of Hamiltonian paths (Rédei 1934) 

 platonic solid, considered as a graph 

 

52.Write brute force algorithm to string matching. 

 ALGORITHM BruteForceStringMatch (T[0…n-1], P[0…m-1])  

//Implements brute-force string matching 

 //Input: An array T[0…n-1] of n characters representing 

 // a text and an array P[0…m-1] of m characters 

 // representing a pattern  

//Output: The index of the first character in the text that  

// starts a matching substring or -1 if the search is  

// unsuccessful 

 for i ← 0 to n – m do 

 j ← 0  

while j < m and P[j] = T[i + j] do  

j ← j + 1 

if j = m return i 

 return -1 

 

 

 

53.What is time and space complexity of merge sort. 

Space complexity of this Merge Sort here is O(n). However, if I choose to perform in-place 

merge sort using linked lists (not sure if it can be done with arrays reasonably) will the space 

complexity become O(lg(n)) 

Time complexity of merge sort 

 

  Best case Average case Worst case 

Θ (n log2 n) Θ (n log2 n) Θ (n log2 n) 

 

54. Write an example problem that cannot be solved by brute-force algorithm. Justify your 

answer. April/May 2021 

It is often implemented by computers, but it cannot be used to solve complex problems 

such as the travelling salesman problem or the game of chess, because the number of 

alternatives is too large for any computer to handle. 

https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Tournament_(graph_theory)
https://en.wikipedia.org/wiki/L%C3%A1szl%C3%B3_R%C3%A9dei
https://en.wikipedia.org/wiki/Platonic_solid
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PART – B 

 

1. Discuss in detail about Brute force algorithm. 

     

Brute force 

Brute Force is a straightforward approach to solve a problem, which is directly based on the problem 

statement and definition of the concepts. Brute Force strategy is one of the easiest approaches. 

 

For exampleComputing an : for a given number a and a non negative integer n , find the 

exponentiation as follows 

 an = a * a* a* ….a* for n times 

Computing n! : The n! can be computed as 1 *2 * 3….*n 

Performing multiplication of two matrices. Searching a key value from given list of 

elements. 

Brute Force Algorithm 

 

Two types of Brute force algorithm 

1.Consecutive integer checking algorithm for computing the greatest common divisor of two  

   integer[gcd (m,n)] 

          2. Definition based algorithm for matrix multiplication. 

 

Advantages of Brute Force Approach  

 

1. It is applicable to a variety of problems. 

2. A brute Force algorithm cab be useful for solving small size instances of a problem. 

3. A brute Force algorithm cab be serve an important theoretical or educational purpose. 

4. The brute force approach provides reasonable algorithms of atleast some practical value with no  

    limitation on instance size for  sorting, searching, matrix multiplication and string matching  

    problem. 

 

2. Explain briefly about Brute-Force String Matching. 

 

 Brute-Force String Matching   

Given a string of n characters called the text and a string of m characters (m ≤ n) called the 

pattern, find a substring of the text that matches the pattern. 

Find i, the index of the leftmost character of the first matching substring in the text such that t 

i = p 0,..., t i+j = p j,...,t i+m-1 = p m-1 : 

 t 0... t i... t i+j... t i+m-1... t n-1 text T 

         ↨       ↨          ↨ 

         p 0... p j... p m-1 pattern P 

Align the pattern against the first m characters of the text and start matching the 

corresponding pairs of characters from left to right until all m pairs of the characters match or 

a mismatching pair is encountered. 

If a mismatch pair is encountered, then shift the pattern one position to the right and resume 

character comparisons, starting again with the first character of the pattern and its counterpart 

in the text. 



CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 2 

 

       
13 

Note that the last position in the text which can still be a beginning of a matching substring is 

n – m (provided text’s positions are indexed from 0 to n – 1). 

ALGORITHM: 

ALGORITHM BruteForceStringMatch (T[0…n-1], P[0…m-1])  

//Implements brute-force string matching 

 //Input: An array T[0…n-1] of n characters representing 

 // a text and an array P[0…m-1] of m characters 

 // representing a pattern  

//Output: The index of the first character in the text that  

// starts a matching substring or -1 if the search is  

// unsuccessful 

 for i ← 0 to n – m do 

 j ← 0  

while j < m and P[j] = T[i + j] do  

j ← j + 1 

if j = m return i 

 return -1 

Brute-Force String Matching 

Example of Brute-Force string matching.  

N O B O D Y _ N O T I C E D _ H I M  

N O T 

   N O T  

        N O T 

                N O T 

                    N O T 

                         N O T 

                             N O T 

                                    N O T 

 

 

Analysis of Brute-Force String Matching Algorithm   

Input Size metric: Number of characters in the text i.e., n. 

Basic operation: Key comparison 

The number of times the basic operation is executed depends not only on the array size but 

also on pattern of input. n-m m-1 n-m n-m C worst (n) = ∑ ∑ 1 = ∑ [(m - 1) - 0 + 1] = ∑ m. 
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i=0 j=0 i=0 i=0 n-m = m ∑ 1 = m ((n - m) – 0 + 1) = mn – m 2 + m i=0 ≈ mn Є Θ(mn) C best 

(n) =Θ(m) C average (n)=Θ(n). 

 

Consider the problem of counting, in a given text the number of substrings that start with an A 

and end with a B. For example, there are four such substrings in CABAAXBYA. Design a 

brute-force algorithm for this problem and determine its efficiency class.( April/May 2021) 

Here is one way in which iterating backwards through the string could result in O(n) 

computation instead of your original O(n^2) work: 

A = "CABAAXBYA" 

 

count = 0 # Number of B's seen 

total = 0 

for a in reversed(A): 

    if a=='B': 

        count += 1 

    elif a=='A': 

        total += count 

 

print total 

This works by keeping track in count of the number of B's to the right of the current point. 

(Of course, you could also get the same result with forwards iteration by counting the number 

of A's to the left instead: 

count = 0 # Number of A's seen 

total = 0 

for a in A: 

    if a=='A': 

        count += 1 

    elif a=='B': 

        total += count 

print total 

) 

 

 

 

 

 

3.  Explain the brute force method to find the two closest points in a set of n points in  

     K-Dimensional space   Nov/Dec 2017     or   Explain convex-Hull problems in detail. OR 

What is convex hull problem?explain the brute force approach to solve convex hull with 

an example.derive the time complexity    April/May 2019   

The closest pair problem is – finding the two closest points from the set of n points. 

For simplicity the closet pair problem can be considered to be in two dimensional case. 

The point is specified by a pair (x,y).hence .hence P=(x,y) is a point on a two dimensional 

plan. 

The distance between two points is denoted by Euclidean distance.  

It is denoted as  
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 where  pi and pj  are two points for which  i<j  

 
The basic operation in above algorithm is computing Euclidian distance between two points.Then 

the basic operation of the algorithm will be squaring a number.  

The number of times it will be executed can be computed as follows: 

C(n) =  

        = 2  

 

        = 2[(n − 1) + (n − 2) + . . . + 1]    = (n − 1)n ∈ θ(n2). 

 

Of course, speeding up the innermost loop of the algorithm could only decrease the algorithm’s 

running time by a constant factor, but it cannot improve its asymptotic efficiency class.  

 

Convex-Hull Problem 

Definition: Given a set S { p1, p2 ,p3, …pn} of points in the plan , the convex hull H(S) is the 

smallest convex polygon in the plane that contains all of the points of S. the set S is called as coves 

set .A polygon is convex if and only if any two points from the set forming a line segment with end 

points entirely within  the polygon 

 

For example 

 
            (a) Convex sets.                    (b) Sets that are not convex. 

 

Definition of Convex Hull: 

The convex hull of a set S of points is the smallest convex set containing S. 

If S is a set of two points its convex hull is the line segment connecting these points .if S is a set of 

three points then its convex hull is the triangle   



CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 2 

 

       
16 

Convex hull problem is the problem of constructing the convex hull for a given set S of n points 

 

Example 1  

 
  

The points { 1, 2, 3, 4 , 5, 6 } are called extreme points 

 

 

 

 

 

Example 2: 

 

 

 

 

 

 

 

 

 

 

The convex hull for this set of eight points is the convex polygon with vertices at {p1, p5, p6, p7, 

and p3.} 

 

P

1

1 

P

4

1 

P

8

1 

P

3

1 

P

1

1 

P

5

1 

P

6

1 

P

2

1 
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Definition of Extreme points  

 

 An extreme point of a convex set is a point which is not a middle point of any line segment 

with end points in the set 

 Extreme points have several special properties other points of a convex set do not have. One 

of them is exploited by the simplex method. 

 This algorithm solves linear programming problems, which are problems of finding a 

minimum or a maximum of a linear function of n variables subject to linear constraints.  

 Here, however, we are interested in extreme points because their identification solves the 

convex-hull problem.  

 Actually, to solve this problem completely, we need to know a bit more than just which of n 

points of a given sets are extreme points of the set’s convex hull: we need to know which 

pairs of points need to be connected to form the boundary of the convex hull.  

 Note that this issue can also be addressed by listing the extreme points in a clockwise or a 

counter clockwise order. 

A few elementary facts from analytical geometry are needed to implement this algorithm. 

1. The straight line through two points (x1, y1), (x2, y2) in the  coordinate plane can be defined by  

the equationax + by = c     where a = y2 − y1, b = x1 − x2, c = x1y2 − y1x2. 

2. Such a line divides the plane into two half-planes: for all the points in the other, ax + by < c.  

 

For the points on the line itself, of course, ax + by = c. 

Thus, to check whether certain points lie on the same side of the line, we can simply check whether 

the expression ax + by = c has the same sign for each of these points.  

Time efficiency of this algorithm is in O(n3): 
 for each of n(n − 1)/2 pairs of distinct points, we may need to find the sign of ax + by – c for each of 

the other n − 2 points 

 

 

4. Explain the concept of Exhaustive search with the help of an   example. Or state the 

travelling salesman problem.elaborate the steps in solving the travelling salesman problem 

using brute force approach.     Nov/Dec 2019 

Explain how exhaustive search can be applied to the sorting problem and determine the 

efficiency class of such an algorithm. (April/May 2021) 

 

Exhaustive search is simply a brute-force approach to combinatorial problems.  

It suggests generating each and every element of the problem domain, selecting those of 

them that satisfy all the constraints, and then finding a desired element. 

  Three exhaustive search problems:  

 The travelling salesman problem, 

 The knapsack problem, and  

 The assignment problem. 

 

1.Travelling Salesman Problem 

 The Travelling salesman problem (TSP) has been intriguing researchers for the last 150 years 

by its seemingly simple formulation, important applications, and interesting connections to 

other combinatorial problems.  

 The travelling salesman problem (TSP) is a famous problem in the graph theory.It can be    

stated as follows  - consider that  there are n cities and travelling salesman has to visit 

each city exactly once and has to return to the city from where he has started. 

 To model this problem weighted graph can be used. The vertices of such graph represent 

cities and the edge weight  specifies the distances between the cities 

 This problem can also be started as finding shortest Hamiltonian circuit of the graph. The 

shortest Hamiltonian circuit is a cycle in the given graph such that all the vertices of the 
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graph can be visited only once.And the tour obtained in such a way has shortest distance. 

Example  
Consider the graph as given below.This is a weighted graph in which weight along the edges 

represent the distances among the cities.  

We have to find shortest Hamiltonian circuit i.e. the path in which each city is visited once and 

returning to the city from which it has started initially. 

 

 

 

 

 

    

 

 

 

 

Tour              Length 

 

a -> b -> c -> d -> a    I = 2+8+1+7 = 18 

a -> b -> d -> c-> a    I = 2+3+1+5 = 11 optimal 

a-> c -> b -> d -> a    I = 5+8+3+7 = 23 

a-> c -> d -> b -> a    I = 5+1+3+2 = 11 optimal 

a-> d ->b -> c -> a    I = 7+3+8+5 = 23 

a-> d -> c -> b -> a    I = 7+1+8+2 = 18 

 

Fig: Solution to a small instance of the travelling salesman  problem by exhaustive search  

 Thus we have to try each possible path and find the shortest distance which gives optimal tour. 

 It is easy to see that a Hamiltonian circuit can also be defined as a sequence of n + 1 adjacent 

vertices vi0, vi1, . . . , vin−1, vi0, where the first vertex of the sequence is the same as the last one and 

all the other n − 1 vertices are distinct 

 

2. Knapsack Problem 

 This is another popular problem which can be solved using exhaustive search.  

It can be stated as follow : suppose that there are n objects from I = 1,2 , 3, …n. each object I  

as some weight wi and values associated with each object is vi .  

And capacity of knapsack is W. a person has to pickup the most valuable objects to fill the  

knapsack to its capacity. 

 

Example:Consider a knapsack instance as follows The Knapsack capacity W=8 

 

 

 

 

 

 

 

I Wi Vi 

1 7 $42 

2 3 $12 

3 4 $40 

4 5 $25 

Subset Total Weight Total Value 

Nil 0 $0 

{1} 7 $42 

{2} 3 $12 

a 

c 

b 

d 

2 

5 8 7 
3 

1 
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Sin

ce the 

subset {3, 

4} gives 

the 

maximum 

value $65, 

it is the 

feasible 

solution, 

so item 3 

and item 4 

can be put 

in the 

Knapsack 

bag. 

Be

cause in 

this 

method, each element of the problem’s domain has to be searched for obtaining solution. Hence 

these problems are also called as NP-hard problems 

 

3.Assignment Problem 

 

 Consider that there are n people who need to be assigned to execute n jobs i.e only one 

person is assigned to execute one job at a time.  

Then problem is to find such assignment that gives smallest total cost. 

The cost can be computed as cost C[i, j, k, l]  

C[i, j, k, l] = Job i is assigned to Person 1, Job j is assigned to Person 2, Job k is assigned to 

 Person 3, Job 4 is assigned to Person 4. 

Example 1 

   

Person Job 1 Job 2 Job 3 Job 4 

Person 1 9 2 7 8 

{3} 4 $40 

{4} 5 $25 

{1,2} 7+3=10 $42+$12=$54 

{1,3} 7+4=11(11>10) Not feasible 

{1,4} 7+5=12(12>10) Not feasible 

{2,3} 3+4=7 $12+$40=$52 

{2,4} 3+5=8 $12+$25=$37 

{3,4} 4+5=9 $40+$25=$65(Feasible) 

{1,2,3} 
7+3+4=14 

(14>10)` 
Not feasible 

{1,2,4} 
7+3+5=15 

(15>10) 
Not feasible 

{1,3,4} 
7+4+5=16 

(16>10) 
Not feasible 

{2,3,4} 
3+4+5=12 

(12>10) 
Not feasible 

{1,2,3,4} 
7+3+4+5=19 

(19>10) 
Not feasible 
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Person 2 6 4 3 7 

Person 3 5 8 1 8 

Person 4 7 6 9 4 

 

<1, 2, 3, 4>  Cost = 9 + 4 + 1 + 4 = 18 

 

<1, 2, 4, 3>  Cost = 9 + 4 + 8 + 9 = 30 

 

<1, 3, 2, 4>  Cost = 9 + 3 + 8 + 4 = 24 

 

<1, 3, 4, 2>  Cost = 9 + 3 + 8 + 6 = 26 

 

<1, 4, 2, 3>  Cost = 9 + 7 + 8 + 9 = 33 

 

<1, 4, 3, 2>  Cost = 9 + 7 + 1 + 6 = 23 

        ...                                   ... etc 

     The no. of permutation for assignment problem is n!. 

Example 2 
 

 

 

 

 

 

 

 

 

 

 

The cost can be obtained by assigning the jobs in various combinations as 

 

< 1,       2,      3,    4 >  Cost = 10 + 5 + 2 + 5 = 22 

 

      < 1,       2,      4,    3 >  Cost = 10 + 5 + 9 + 10 = 34 

 

< 1,       3,      4,    2 >  Cost = 10 + 4 + 9 + 7 = 30 

 

< 1,       3,      2,    4 >  Cost = 10 + 4 + 9 + 5 = 28 

 

  < 1,       2,      4,    3 >  Cost = 10 + 5 + 9 + 10 = 34 

 

< 1,       4,      2,    3 >  Cost = 10 + 8 + 9 + 10 = 37 

 

< 1,       4,      3,    2 >  Cost = 10 + 8 + 2 + 7 = 27 

        ....                                                 etc. 

Thus by trying 24 permutations (n! = 4! = 24), we can obtain feasible solution.  

The feasible solution < 2, 1, 3, 4 > i.e . Cost = 3 + 7 + 2 + 5 = 17 

Thus we have to generate n! instances to find solution using exhaustive search method is for  

solving such problems. 

For solving these type of problems , many efficient algorithms are available .  

Person Job 1 Job 2 Job 3 Job 4 

Person 1 10 3 8 9 

Person 2 7 5 4 8 

Person 3 6 9 2 9 

Person 4 8 7 10 5 
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5.  Explain Divide and Conquer technique.                          Dec 2009 

 

 Divide & conquer technique is a top-down approach to solve a problem. 

 The algorithm which follows divide and conquer technique involves 3 steps: 

 Divide the original problem into a set of sub problems. 

 Conquer (or Solve) every sub-problem individually, recursive. 

Combine the solutions of these sub problems to get the solution of original problem. 

 Divide and Conquer is one of the best algorithm design technique 

 

Algorithm DC(p) 

{ 

If P is too small then 

Return solution of P. 

Else 

{ 

Divide (p) and obtain  p1, p2, …..pn  where n ≥ 1 

Apply DC to each sub problem 

Return combine (DC(p 1),  

DC( p2)….Dc(pn)); 

} 

} 

 

The diagrammatic representation of the divide and conquer technique is shown in figure 

which divides the problem into two smaller sub problems.   

 
Example:To compute sum of n numbers  then by divide and conquer we can solve the problem as 

                  (a0 + ….an-1) 

 

 

  

 

(a0 + ….a[n/2]-1)    (a[n/2] + ….an-1) 

                Solution 1        Solution 2 
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        (a0 + ….an-1) 

 

If we want to divide a problem of size n in to a size of n /b taking f(n) time to divide and 

combine , then we can set up recurrence relation for obtaining time for size n is  

T (n) = a  T (n/b) + f (n), 

T(n/b) = Time for size n/b time required for dividing the problem in to sub problem. 

T(n) = Time for size n 

n = number of sub instances 

The above equation is called general divide and conquer recurrence. The order of growth of 

T(n) depends upon the constants a, b and order of growth function f(n). 

 

 

Divide and Conquer technique 

Examples for divide and conquer method are, 

 Binary search  

 Quick sort 

 Merge sort 

Example 1 :  

Consider the problem of computing the sum of number a0 …… an-1.If n > 1, the 

problem is divided into two instances of the same problem. 

They are 

To compute the sum of the first [n/2] numbers. 

To compute the sum of the remaining [n/2] numbers. 

Once the two instances are computed, add their values to get the sum of original problem. 

a0 + a1 +……+ an-1 = (a0 + a1 +……+ a[n/2]-1) + (a[n/2] +……+ an-1) 

An instance of size n can be divided into several instances of size   n/b,  

Where  a and b are constants  a ≥ 1 and b > 1 

The recurrence for the running time T(n) is  

 

                                 T(n) = aT(n/b) + f(n) ,  

 

which is called as general divide and conquer recurrence  

 where, f(n) is a function that accounts for the time spent on dividing the problem into smaller 

ones and on combining their solutions. 

 The order of growth of T(n) depends on the values of the constants ‘a’ and ‘b’ and the order 

of growth of the function f(n). 

 

For example, the recurrence equation for the number of additions is  

 

a(n) =  2a(n/2) + 1 

Advantages of divide and conquer 

The time spent on executing the problem using divide and conquer is smaller than other 

methods. 

The divide and conquer approach provides an efficient algorithm in computer science. 

The divide and conquer technique is ideally suited for parallel computation in which each 

sum problem can be solved simultaneously by its own processor. 

 

6. Explain the Merge Sort algorithm with the help of illustrative   Example.   Dec2013/14/15/16 

   OR  Explain the working of Merge Sort Algorithm with an example.  Nov/Dec 2017 

Explain Merge sort algorithm with an example. April/May 2018 
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 The merge sort is a sorting algorithm that uses the divide and conquer strategy.  

Division is dynamically carried out.  

 Merging is the process of combining two or more files into a new sorted file. 

Merge sort on an input array with n elements consists of three steps: 

Divide: partition array into two sub lists s1 and s2 with n/2 elements each Conquer: then sort 

sub list s1 and sub list s2. 

Combine: merge s1 and s2 into a unique sorted group. 

Merge sort is a perfect example of a successful application of the divide and conquer 

technique. 

It sorts a given array A[0…..n − 1] by dividing it into two halves A[0…..[n/2]−1] and 

A[[n/2]…..n − 1]. 

It sorts each half separately by using recursive procedure, and Then, merging the two smaller 

 sorted arrays into a single sorted one. 

Steps to be followed 

 The first step of the merge sort is to chop the list into two. 

 If the list has even length, split the list into two equal sub lists. 

 If the list has odd length, divide the list in two by making the first sub list one entry greater 

than the second sub list. 

 Then split both the sub lists into two and go on until each of the sub lists are of size one. 

Finally, start merging the individual sub lists to obtain a sorted list. 

 

Example: 

The  operation of the algorithm for the array of element (8,3,2,9,7,1,5,4) is explained in the figure 

given below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An example of Merge Sort operation 

8    3     9 2   1  7    4  5  

3   8    2   9    1   7    4   5 

8    3   2   9   7   1   5   

4 

8    3   2   

9    

7   1   5   

4 

8    

3    

2   9    7   1    5   4 

1    2   3   4   5   7  8   

9 

2    3   8   

9    

1    4   5   

7   
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ALGORITHM  

Algorithm Mergesort(A[0..n − 1]) 

//Sorts array A[0..n − 1] by recursive mergesort 

//Input: An array A[0..n − 1] of orderable elements 

//Output: Array A[0..n − 1] sorted in nondecreasing order 

If n > 1 

copy A[0..n/2] − 1] to B[0..n/2] − 1] 

copy A[[n/2]..n − 1] to C[0..[n/2]] − 1] 

Merge sort(B[0..[n/2] − 1]) 

Mergesort(C[0..[n/2] − 1]) 

Merge (B, C, A) //see below 

 

 The merging of two sorted arrays can be performed as follows. 

 Two pointers are initialized to point to the first elements of the arrays being merged. 

 Then the elements are compared and the smaller of both is added to a new array or 

list being constructed. 

 Then the index of that smaller element is incremented to point to its immediate 

successor in the array. 

 The above steps are continued until one of the two given array is exhausted. 

Then the remaining elements of the other array are copied to the end of the next array. 

 

Algorithm Descriptive and Implementation 

ALGORITHM Merge(B[0..p − 1], C[0..q − 1], A[0..p + q − 1]) 

//Merges two sorted arrays into one sorted array 

//Input: Arrays B[0..p − 1] and C[0..q − 1] both sorted 

//Output: Sorted array A[0..p + q − 1] of the elements of B //and C 

i ← 0; j ← 0; k ← 0 

while i<p and j<q do 

if B[i] ≤ C[j ] 

A[k]← B[i];  

i ← i + 1 

else  

A[k]← C[j ]; 

j ← j + 1 

k ← k + 1 

if i = p 

copy C[j..q − 1] to A[k..p + q − 1] 

else  

copy B[i..p − 1] to A[k..p + q − 1] 

 

Efficiency of Merge Sort 

In merge sort algorithm the two recursive calls are made. Each recursive call focuses on n/2 

elements of the list .  

After two recursive calls one call is made to combine two sublist i.e to merge all n elements.  

Hence we can write recurrence relation as  

T(n) =  T(n/2) + T(n/2) + cn 

            T(n/2) = Time taken by left sublist 

            T(n/2) = time taken by right  sublist         

T(n) = time taken for combining two sublists 

         where n> 1 T (1) = 0 

The time complexity of merge sort can be calculated using two methods 

Master theorem 
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Substitution method   

 

Master theorem 

Let , the recurrence relation for merge sort is  

 

T(n) =  T(n/2)   +    T(n/2)  +    cn 

let 

T(n) =  aT(n/b)  +    f(n)   be a recurrence relation 

 

i.e.  T(n) =  2T(n/2)  +    cn   -------  ( 1 ) 

 

T(1) =  0 ----------- (2 ) 

 

As per master theorem    

   T(n) = Θ (n d long n )  if a = b   

As equation  ( 1), 

a =2 , b = 2 and f(n) = cn and a = bd 

i.e 2 = 2`  

This case gives us , T (n) =Θ (n log2 n) 

 

Hence the average and worst case time complexity of merge sort is C worst (n) = (n log2 n) 

 

Substitution method   

     Let, the recurrence relation for merge sort be 

T(n) =  T(n/2)   +    T(n/2)  +    cn for n>1 

i.e.  T(n) =  2T(n/2)  +    cn        for n>1            ------- (3) 

   T(1) =  0         -------(4) 

Let us apply substitution on equation ( 3) . 

Assume     n=2k 

T(n) =  2T(n/2)  +    cn      

T(n) =  2T(2k/2 ) +    c.2k 

T(2k) =  2T(2k-1) +    c.2k       

If k = k-1 then,  

T(2k) =  2T(2k-1) +    c.2k       

T(2k) =  2[2T(2k-2) + c.2k -1] + c.2k       

T(2k) = 22 T(2k-2) + 2.c.2k -1  + c .2k       

T(2k) = 22 T(2k-2) + 2.c.2k /2   + c.2k       

T(2k) = 22 T(2k-2) + c.2k   +    c.2k       

T(2k) = 22 T(2k-2) + 2c .2k   

Similarly we can write, 

T(2k) = 23 T(2k-3) + 3c .2k   

T(2k) = 24 T(2k-4) + 4c .2k   

…..…. 
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T(2k) = 2k T(2k-k) + k.c.2k   

T(2k) = 2k T(20) + k.c.2k   

T(2k) = 2k T(1) + k.c.2k  -------- (5) 

But as per equation (4), T(1) =0 

There equation (5) becomes ,  

T(2k) = 2k .0 +. k. c . 2k   

T(2k) = k. c . 2k   

But we assumed n=2k , taking logarithm on both sides. 

i.e. log 2 n = k 

Therefore     T(n) = log 2 n. cn 

Therefore   T (n) =Θ (n log2 n) 

Hence the average and worst case time complexity of merge sort is  

   C worst (n) = (n log2 n) 

Time complexity of merge sort 

 

  Best case Average case Worst case 

Θ (n log2 n) Θ (n log2 n) Θ (n log2 n) 

 

       Application of Merge Sort 

 Sorting  

 Tape Sorting 

 Data Processing 

       Demerit 

 The algorithm requires linear amount of extra storage. 

 

7. Explain the Quick Sort algorithm with the help of illustrative example   Or  Explain the time 

complexity of quick sort method in detail OR Write the algorithm for Quick Sort and write its 

time complexity with example list are 5, 3, 1,  9, 8, 2, 4, 7.  Apr/May 2017 

    Write the algorithm for quick sort. Provide a complete analysis of quick sort for 

the given set of numbers 12, 33, 23, 43, 44, 55, 64, 77 and 76. (13)  Nov/Dec 2018 

Or  Write the quick sort algorithm and explain it wiyh example.derive the worst case and 

average case tiome complexity     April/May 2019 

 

 Quick sort is a sorting algorithm that uses the divide and conquers strategy.  

The three steps of quick sort are as follows: 

Divide:  Split the array into two sub arrays that each element in the left sub array is less than 

or equal the middle element and each element in the right sub array is greater than the  

middle element . 

The splitting of the array into two sub array is based on pivot element. All the elements that 

are less than pivot should be in left sub array and all the elements that are more than pivot 

should be in right sub array 

 

Conquer: Recursively sort the two sub arrays. 
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Combine: Combine all the sorted elements in a group to form a list of sorted elements  

Quick sort is also referred as Partition Exchange sort.  

 

 The problem of sorting a set is reduced to the problem of sorting two smaller subsets. 

Quick sort divides input elements according to their position in the array.It also divides the  

input elements according to the value of element. 

To achieve the partition, quick sort rearrange the given array element a[0,..n-1] 

It is a situation where all the elements before the position ‘S’ are smaller than or equal to a[s] 

and all the elements after position ‘s’ are greater than or equal to a[s]. 

 

The partition is shown as  

 

 

 

                          a[0]….a[s-1]        a[s]  a[s+1]……a[n-1] 

              

 

all are ≤a[s]        mid     all are ≥a[s] 

 

These elements are               These elements are  

                 Less than A[m]             Greater than A[m] 

 

After partitioning, a[s] will be in its final position in the sorted array. 

Then sorting of element of two sum arrays preceding and following a[s] can be done 

independently. 

After both scans stop, three situations may arise, depending on whether or not the scanning 

indices have crossed. 

1. If scanning indices i and j have not crossed, i.e., i < j, we simply  xchange A[i] and A[j ] and  

resume the scans by incrementing i  and decrementing j, respectively: 

 

                                 i       j  

   

                                  

      P- pivot element  

2. If the scanning indices have crossed over, i.e., i > j, we will have  partitioned the Sub array 

after exchanging the pivot with A[j]. 

 

           j              i       

P All elements ≤P ≥P ≤ P All elements ≥P 

 

3. Finally, if the scanning indices stop while pointing to the same element, i.e.,i   = j, the value 

they are pointing to must be equal to   p.  

 

 

 Thus, we have the sub array partitioned, with the split position     s =  i = j : 

 

 i = j 

P All elements ≤P =P All elements ≥P 

 

Combine the last case with the case of crossed-over indices (i > j )  by exchanging the pivot with 

A[j] whenever i ≥ j . 

Example  

The array elements are 

P All elements ≤P ≥P ……. ≤ P All elements ≥P 
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5 3 1 9 8 2 4 7 

  The first element of array is chosen as pivot element. 

 

Two indices i and j are used for scanning. 

P i      j 

5 3 1 9 8 2 4 7 

 

P  i    j  

5 3 1 9 8 2 4 7 

 

P   i   j  

5 3 1 9 8 2 4 7 

Now exchange the elements 9 and 4 now array becomes, 

 

P    i j   

5 3 1 4 8 2 9 7 

Now also exchange a[i] and a[j], the resultant array becomes, 

 

 

P    i j   

5 3 1 4 2 8 9 7 

 

Now the scanning indices i and j have not crossed (ie) i < j, simply exchange i and j. 

The array becomes 

P    j i   

5 3 1 4 2 8 9 7 

 

Since a[j] < pivot, (2<5) exchange them. 

The result is 

    P    

2 3 1 4 5 8 9 7 

Now, the array has been sub divided into sub array with pivot element as middle. 

Sub array 1 

2 3 1 4 

 

P i  j 

2 3 1 4 

 

P i j  

2 3 1 4 

 

Exchange a[i] and [j] 

 

P i j  

2 1 3 4 

 

Since i < j, exchange a and j 

 

P j i  

2 1 3 4 

 

Since a[j] < pivot, (1 < 2) exchange i and j 
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P i  j 

1 2 3 4 

 

Sub array 3 

3 4 

 

P ij 

3 4 

 

i=j, ie both points to the same element. 

j j 

3 4 

 

Sub array 2 

8 9 7 

 

P i j 

8 9 7 

 

Exchange a[i] and a[j] 

 

The sub array 2 becomes 

 

P i j 

8 7 9 

 

Here i < j simply exchange i and j 

 

It becomes 

P j i 

8 7 9 

 

Since a[j] < pivot, exchange them 

7 8 9 

 

 

Hence, the array elements are sorted. The sorted array is 

1 2 3 4 5 7 8 9 

Recursive Calls Tree 
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Tree of recursive calls to Quicksort with input values l and r of subarray bounds and split position s 

of a partition obtained. 

 

 

ALGORITHM FOR QUICK SORT 

ALGORITHM Quicksort(A[l..r]) 

//Sorts a subarray by quicksort 

//Input: Subarray of array A[0..n − 1], defined by its left and  

//right  indices l and r 

//Output: Subarray A[l..r] sorted in nondecreasing order 

if l<r 

s ←Partition(A[l..r]) //s is a split position 

Quicksort(A[l..s − 1]) 

Quicksort(A[s + 1..r]) 

 

ALGORITHM Hoare Partition(A[l..r]) 

//Partitions a subarray by Hoare’s algorithm, using the first //element as a pivot 

//Input: Subarray of array A[0..n − 1], defined by its left and //right  indices l and r (l < r) 

//Output: Partition of A[l..r], with the split position returned //as this function’s value 

p ← A[l] 

i ← l; j ← r + 1 

repeat 

repeat i ← i + 1 until A[i] ≥ p 

repeat j ← j − 1 until A[j ] ≤ p 

swap(A[i], A[j ]) 

until i ≥ j 

swap(A[i], A[j ]) //undo last swap when i ≥ j 

swap(A[l], A[j ]) 

return j 

 

 

 

Efficiency of Quick Sort 

The number of key comparisons made before a partition is achieved is n + 1 if the scanning 

indices i and j cross over. 

The number of key comparisons is n, if the scanning indices i and j coincides. 

 

Best Case Analysis( split in the middle) 

If the array is always partitioned at the mid , then it brings the best case efficiency of an 

algorithm 

The number of key comparisons in the best case satisfies the recurrence  

 

Cbest(n) = 2 Cbest(n/2) + n for n > 1,  

       

Or 

 

C(n) = C (n/2)  +  C (n/2)  +  n  ----------( 1 ) 

 

 

Time required to       Time required to            Time required for 

sort left sub array sort right sub array    partitioning the sub array 

 

and     Cbest(1) = 0.  
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Using Master Theorem 

Solve equation (1) using Master Theorem 

If f(n) ∈ Θ (n d ) then 

T(n) = Θ (n d)   if a < bd 

T(n) = Θ (n d log n )  if a = bd 

T(n) = Θ (n  log 
b 

a )  if a> b bd 

C(n) = 2 C(n/2) +n 

Here f(n) ∈ n1 therefore d = 1 

Now , a = 2 and b = 2  

 As from case 2 we get a = bd i.e. 2 = 21  

We get , 

T(n) i.e C(n) =  Θ (nd log n ) 

Cbest(n) = Θ (n log n) 

Best case time complexity of quick sort is Θ (n log n) 

 

Using substitution method 

C(n) = C (n/2)  +  C (n/2)  +  n  ----------( 1 ) 

  C(n) = 2C (n/2) +n 

Assume n = 2K since each time the list is divide into two equal halves . then equation becomes, 

C(2K) = 2C(2k /2) + 2k 

C(2K) = 2C(2k -1) + 2k 

Now substitute C(2k -1 ) = 2C(2k-2) + 2k-1 

    C(2K) = 2[2C(2k-2) + 2k-1] + 2k 

    C(2K) = 22C(2k-2) + 2.2k-1 + 2k 

    C(2K) = 22C( 2k-2) + 2k + 2k 

    C(2K) = 22C( 2k-2) +2.2k  

If we substitute C(2k -2) then , 

     C(2K) = 22C( 2k -2) +2. 2k  

     C(2K) = 22[2 C(2k -3) + 2k – 2] + 2.2k 

     C(2K) = 23C(2k -3) +22. 2k – 2 + 2.2k 

     C(2K) = 23C(2k -3) + 2k  + 2.2k 

     C(2K) = 23C(2k -3) + 3.2k 

Similarly we can write 

     C(2K) = 24C(2k -4) + 4.2 k 

      ---- 
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        C(2K) = 2kC(2k-k) + k.2 k 

     C(2K) = 2kC( 20) + k.2 k 

     C(2K) = 2kC( 1) + k.2 k 

     C(1) = 0  

hence the above equation becomes 

C (2K) = 2k.0 + k.2 k 

now as we assumed n = 2k we can also say  

n = log 2 n [by taking logarithm on both side] 

C( n) = n.0 + log 2 n . n 

Thus it is proved that best case time complexity of quick sort 

 is Θ (n log n) 

Worst Case Analysis (sorted array) 

The worst case for quick sort occurs when the pivot is a minimum or maximum of all the 

elements in the list . 

For example, 

if A[0..n − 1] is a strictly increasing array and we use A[0] as the pivot, 

The left-to-right scan will stop on A[1]  

The right-to-left scan continues upto A[0] 

The total number of key comparisons made will be equal to 

Cworst(n) = (n -1) + n 

Cworst(n) = (n - 1) +( n-2) + ... + 2 + 1 

But as we know 

1 + 2+ 3 +---- + n = n (n + 1)/2 = ½ n2 

                Cworst(n) ∈ θ(n2) 

The time complexity of worst case of quick sort is θ (n2) 

 

Average Case Analysis (random array) 

Let Cavg(n) be the average number of key comparison made by Quick Sort. 

The partition split can be happen in each position S (0≤S≤n-1) with the probability 1/n. 

The recurrence relation is 

 
Cavg (n) ≈ 2n ln n ≈ 1.39 n log2 n. 

Thus, on the average case, Quick Sort makes 38% more comparison the best case. 

Hence average case time complexity of quick sort is Θ ( n log n) 

Time complexity of quick sort 

  

Best case Average case Worst case 

Θ(n log n) Θ(n log n) θ (n2) 

 

Application  

Internal sorting of large data sets. 

To improve the efficiency of the Quick sort various methods are used to choose the pivot 

element. 
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One such method is called, median of three partitioning that uses the pivot element as the 

median of left most, right most and the middle element of the array. 

 

8. Write an algorithm to perform binary search on a sorted list of  elements. Analyse the 

    algorithm for the best case , worst case  and average case. May 2011 / Dec 2008  (Or) What is 

divide and conquer strategy and explain the binary   search with suitable example   problem.  
Dec 2011  (Or )  Differentiate sequential search from binary search technique.May 2009 

Apr/May-2017 

Write an algorithm using divide and conquer to search an element in a list of numbers. If the 

number is not present, the algorithm returns the closest number of the searches number. 

(April/May 2021) 

 

 The binary search algorithm is one of the most efficient searching techniques which require the list 

to be sorted in ascending order. 

 To search for an element in the list, the binary search algorithms split the list and locate the middle 

element of the list. 

 The middle of the list is calculated as middle := (l + r) div n-numberof element in list 

 The algorithm works by comparing a search key element ‘k’ with the array middle element a[m]  

After comparison, any one of the following three conditions occurs. 

 If the search key element ‘k’ is greater than a[m], then the search element is only in the upper or 

second half and eliminate the element present in the lower half. Now the value of l is middle m+1. 

 If the search key element ‘k’ is less than a[m], then the search element is only in the lower or 

first half. No need to check in the upper half. Now the value of r is middle m-1. 

If the search key element ‘k’ is equal to a[m] , then the search key element k is found in the  

 position m, Hence search operation is complete. 

 The above steps are repeated until the search element is found, which is equal to the middle 

element or the list consists of only one element that is not equal to the search key element. 

 

a[0]….a[m-1]                a[m]    a[m+1]……a[n-1] 

    

        

 search have if k<a[m]            k         search have if k>a[m] 

 

Example: 

 

The  list of element are 3,14,27,31,39,42,55,70,81,85,93,98 and searching for k=70 in the list. 

          

0     1     2     3 4     5     6      7 8     9     10     11    12 

 

         3    14   27  31    39   42   55  70 74   81    85    93  98 

    

m- middle element 

m = n div 2 

         = 13 div 2 

m = 6 

 

0     1     2     3 4     5     6      7 8     9     10     11    12 

          

3    14   27  31    39   42   55  70 74   81    85    93  98 

                                                  

  m 

 

0     1     2     3 4     5   6      7 8     9     10     11    12 
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3    14   27  31    39   42    55  70 74   81    85    93  98 

            l                                           m 

 

Since k> a[m] , then , l=7. 

So, the search element is present in second half. 

 

Now the array becomes 

7 8 9 10 11 12 

70 74 81 85 93 98 

                    l                                                r 

 

m = (l + r) div 2 

         = 19 div 2 

m = 9 

 

7 8 9 10 11 12 

70 74 81 85 93 98 

                    l                  m                         r 

 

Since k< a[m] and 70 < 81 

 

So, the element is present in the first half 

 

Now, the array becomes 

7 8 

70 74 

 l        r 

                      m = (l + r) div 2 

           = (7+8) div 2 

 m = 7 

 

7 8 

70 74 

    l, m      r 

  

Now k = a[m] and 70 =70 

 

Hence, the search key element 70 is found in the position 7 and the search operation is completed. 

 

Algorithm Description and Implementation 

Establish the array a[0….n-1] and the value to be found k. 

Assign the l and r variables to the array limits. 

While l<r do 

Compute the middle position of the remaining array segment to be searched. 

If the value found is greater than current middle then 

Adjust l value according  

else 

Adjust r value according 

If the array element at ‘l’ position is equal to the value to be found then  

Return found and position 

else 

Return not found and -1. 
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Algorithm 

// Non  recursive binary search 

Algorithm BinSearch (var a, n elements, n, x: integer) 

Var l,r,m:integer; 

//Input: Given an array a[0….n-1] sorted in ascending order //and search key k.  

//Output: An index of the array’s element that is equal to k or //-1 if there is no such element. 

begin 

l:=0; r := n-1; 

while (l≤ r) do 

begin 

mid := [(l + r) div 2]; 

if k = a[mid] then  

return m; 

else if k <a[m] then  

r:=m-1; 

else  

l:=m+1; 

end: 

return -1 

end 

 

Efficiency of Binary Search 

The standard way to analyze the efficiency is to count number of times search key is 

compared with an element of the array. 

 

Worst Case Analysis 

The worst case includes all arrays that do not contain a search key. 

The recurrence relation for  

 

Cworst(n) =   Cworst (n/2)  +   1,    for n > 1 ----- (1) 

   

             

Time required to                 one comparison  

          compare  left sublist   made with middle element  

           or right sub list   

  

Cworst(1) = 1 -------- ( 2 ) 

 

The above recurrence relation can be solved further .  

 

assume  n=2k the equation ( 1 ) becomes  

 

    Cworst(2
k) = Cworst(2 k /2)+ 1 

     

Cworst(2
k) = Cworst(2 k-1)+ 1 ------ ( 3 ) 

Using backward substation method , we can substitute  

    Cworst(2
k-1) = Cworst(2

k-2)+ 1 

Then equation  (3)   becomes 

    Cworst(2
k) = [Cworst( 2 k-2)+ 1] + 1 
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    Cworst(2
k) = Cworst( 2 k-2)+ 2 

Then  

    Cworst(2
k) = [Cworst( 2 k-3)+1]+ 2 

    Cworst(2
k) =Cworst( 2 k-3)+3 

     --- 

     --- 

    Cworst(2
k) =Cworst( 2 k-k)+k 

    Cworst(2
k) =Cworst( 2 0)+k 

    Cworst(2
k) =Cworst( 1 )+k  ----- (4) 

But as per equation (2 )  

as we have assumed n = 2k taking logarithm (base 2 )on both sides  

log 2 n = log 2 2k 

log 2 n = k. log 2 2 

log 2 n = k(1) therefore log 2 2 =1 

therefore k = log 2 n 

    Cworst(1) = 1 the we get equation ( 4 ) 

    Cworst(2
k) =  1 + k      

    Cworst(n) =  1  + log2n ----- (2) 

Cworst(n) =   log2n      for n>1 

The worst case time complexity of binary search is Θ(log2n) 

As  Cworst(n) =   log2n + 1   

we can verify equation ( 1) with this value. 

Cworst(n) =   Cworst[(n/2)]  +   1  

In equation (1) put n = 2i 

L.H.S  

  Cworst(n)     = log2n + 1 

         = log2(2i )+ 1 

    = log 2 2 + log 2i + 1 

    = 1+ log 2i + 1 

    = 2 + log 2i 

Cworst(n)     =2 + log 2i 

 R.H.S  

  Cworst(n/2)+1 = log 2(2i/2 )+ 1 

        = log 2i + 1 

        = log 2 2i + 1+ 1 

        = 2 + log 2i 

Cworst(n/2) =2 + log 2i 

    L.H.S = R.H.S 

Hence 

  Cworst(n) = log 2n + 1 and  

  Cworst(i) = log 2i + 1 are same 

Hence 

  Cworst(n) = Ө(log n ) 
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Average Case Analysis 

To obtain average case efficiency of binary search we will consider some sample input n.  if  n = 1 

i.e. only element 11 is there only  one search is required to search some KEY. 

 

If n = 2 and search key = 22 

11 22 

  0 1 

 

Two comparisons are made to search 22 

 

Similarly n= 4, 8, 16  and search key = 44, 88  

 

11 22 33 44 

  0  1  2        3 

 

N Total comparison ( c) 

1 1 

2 2 

4 3 

8 4 

16 

. 

5 

. 

 

   

Observing the above given table we can write 

log2 n + 1 = c 

for instance  

if n= 2 then  

                                   log2 2 = 1 

then  c= log 2 2 + 1 

c = 1 + 1 

    c =2 

 if n = 8 , then  

c = log2 n + 1 

      = log2 8 + 1 

     = 3 + 1 

C = 4 

Average number of comparison made by the binary search is slightly smaller than worst case. 

Cavg(n)  log2 n 

The  average number of comparison in the successful search is Θ(log 2n) 

 

Advantages 

 In this method elements are eliminated by half each time. So it is very faster than the sequential 

search. 

 It requires less number of comparisons than sequential search to locate the search key element. 

 

Disadvantages 

 An insertion and deletion of a record requires many records in the existing table be physically moved 

in order to maintain the records in sequential order. 

 The ratio between insertion/deletion and search time is very high. 

 

Applications of binary search 
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 The binary search is an efficient searching method and is used to search desired record from 

database 

 For solving nonlinear equations with one unknown this method is used. 

 

Time complexity of binary search 

 

               

Best case Average case Worst case 

Θ(1) Θ(log2n) Θ(log2n) 

 

Difference between sequential and binary search : 

 

 

9. Explain the method of multiplication of large numbers with the  help of    illustrate example   

    Multiplication of Large Integer 

In this method of multiplying two numbers  multiplies the multiplicand by each digit of 

multiplier and then adds up all the properly shifted results.  

This method is also called grade – school multiplication 

    For example 

    42 

×34 

      = 168 

But this method is not convenient for performing multiplication of large integers . hence let 

us discuss an interesting algorithm of multiplying large integer . 

For example  

To demonstrate the basic idea of the algorithm, let us start with a case of two-digit integers, 

say, 23 and 14.  

These numbers can be represented as follows:  

23  2. 101 + 3 .100 and 14 = 1 . 101 + 4  . 100 

24 Now let us multiply both the numbers 

23 ∗ 14 = (2  . 101 + 3 . 100) * (1 . 101 + 4 . 100 ) 

   = (2 ∗ 1) 102 + (2 ∗ 4 + 3 ∗ 1) 101 + (3 ∗ 4) 100  

=2*100+ (8 +3)10 +(12) 1 

=200+110+12 

= 322 

Sequential technique binary search technique 

This is the simple technique of searching an 

element 

This is the efficient technique of searching an 

element 

This technique does not require the list to be 

sorted 

This technique require the list to be sorted. Then 

only this method is applicable 

The worst case time complexity of this technique 

is O(n) 

The worst case time complexity of this technique 

is O(log n) 

Every element of the list may get compared with 

the key element. 

Only the mid element of the list is compared with 

key element. 
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Let us formulate this method Let  

c = a ∗ b  

c = c2102 + c1101 + c0 ------(1) 

Where, 

c2 = a1 ∗ b1 -->is the product of their first digits, 

c0= a0 ∗ b0   -->is the product of their second digits, 

c1 = (a1 + a0) ∗ (b1 + b0) − (c2 + c0) --> is the product of the sum of the a’s digits 

and the sum of the b’s digits minus the sum of c2 and c0 

The 2 digit numbers are 

    a = a1 a0 

    b = b1 b0 

Let perform multiplication operation with the help of formula given in equation (1) 

c = a ∗ b  

c= 23 * 14          

Where  a1 = 2, a0 = 3 , b1 = 1,  b0 = 4 

Let us obtain  c0, c1, c2 values  

c2 = a1 ∗ b1 

              = 2 * 1  

c2 = 2 

c0= a0 ∗ b0    

              = 3 * 4 

c0 = 12 

c1 = (a1 + a0) ∗ (b1 + b0) − (c2 + c0) 

            = (2 + 3) *( 1 + 4) – (2 +12) 

                      =  5 * 5 – 14 

c1 =25-14 

c1 = 11 

Therefore  

    a * b = c2 102 + c1 101 + c0 

    = 2 * 100 +11 * 10 +12 

    = 200 +110 +12 

    a * b = 322 

We can generalize this formula as 

c = a ∗ b  

c = c2102 + c1101 + c0 

where , n is total number of digits in the integer 

c2 = a1 ∗ b1  

c0= a0 ∗ b0    

           c1 = (a1 + a0) ∗ (b1 + b0) − (c2 + c0)  

Analysis 

In this method there are 3 multiplication operations 1 digit numbers 

i.e   c2 = a1 ∗ b1   --> multiplication 1 

                c0 = a0 ∗ b0   --> multiplication 2  

                c1 = (a1 + a0) ∗ (b1 + b0) − (c2 + c0)->multiplication 3 

The multiplication of n digit numbers requires three multiplications of n/2 digit numbers, the 

recurrence equation for the number of multiplication M(n) will be, 

    

M(n)=3M(n/2),  for n>1  And      M(1)=1  where n = 1  

 

Now put  n=2k  Solving it by backward substitutions for  

M(2k)=3 M(2k /2) 

M(2k)=3 M(2k-1) 
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=3[3 M(2k-2)] 

=32 M(2k-3) 

………. 

=3k M(2k-k) 

=3k M(20)       Since 20 = 1 

=3k 

Using equation (3) , M(n) = 1 

Therefore M(2k) = 3k ------ (4) 

as n= 2k we get k = log2n  ,equation  (4) 

M(n)= 3 log 2n 

   =n log 2 3  therefore    a log b c = c log2 a 

   ≈ n 1.585   

  M(n) ≈ n1.585   

 

12. Explain the working of Strassen's Matrix Multiplication with the help of divide and 

conquer method. April/May 2018 

What is Strassen’s matrix multiplication and explain how it is solves the problem using 

divide and conquer technique. (April/ May 2021) 

 

The Strassen’s matrix multiplication algorithm finds the product C of two 2 by 2 matrices A 

and B with just seven multiplication as opposed to eight required by the brute force algorithm. 

It is accomplished by using the following formula. 

 

 C = A × B 

 
 

 

The multiplication gives  

C00 = a00 ×b00 +a01 ×b10 

C01 = a00 ×b01 +a01 ×b11 

C10 = a10 ×b01 +a11 ×b10 

C11 = a10 ×b00 +a01 ×b11 

 

Thus to accomplish 2 ×2 matrix multiplication there are total 8 multiplication and 4 additions  

The divide and conquer approach can be used for implementing Strassen’s matrix 

multiplication 

Divide: divide matrices into sub – matrices : A0 , A1, A2 etc 

Conquer: use a group of matrix multiply equations 
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Combine: recursively multiply sub – matrices and get the final result of multiplication 

after performing required additions or subtractions. 

 

 
 

Where 

m1 = (a00 + a11) * (b00 + b11) 

m2 = (a10 + a11) * b00  

m3 = a00 * (b01 - b11) 

m4 = a11 * (b10 - b00) 

m5 = (a00 + a01) * b11 

m6 = (a10 + a00) * (b00 + b01) 

m7 = (a01 + a11) * (b10 + b11) 

Thus, to multiply two 2 by 2 matrices, strassen’s algorithm makes seven multiplication and 

18 additions/subtractions where as the brute force algorithm requires eight multiplication and for 

additions. 

These numbers should not lead us to multiplying 2 by 2 matrices by strassen’s algorithm. 

Its importance stems from its asymptotic superiority as matrix order n goes to infinity.Let A 

and B be two n-by-n matrices where n is a power of two. 

 

If n is not a power of two, matrices can be added with rows and column of zeros.The matrix 

A,B and their product is divided into 4,n/2 by n/2 submatrices each as follows  

 

 
 

The value C00 can be computed as either a00 * b00 or a01 * b10 or as M1 + M4 – M5 + M7 

, where M1 , M4 , M5 and M7 are found by strassen’s formula with the numbers replaced by the 

corresponding submatrices. 

The seven products of n/2 and n/2 matrices are computed recursively by the strassen’s matrix 

multiplication algorithm. 

 

Efficiency of strassen’s matrix multiplication 

If M(n) is the number of multiplication made by strassen’s algorithm in multiplying two n by 

n matrices where n is a power of 2, then the recurrence relation is 

M(1) = 1 

M(n)=7 M(n/2) 

Since n=2k yields 

M(2k)=7k M(n/2k) 

=7[7 M(2k-2)] 

=72 M(2k-2) 

=7i M(2k-i) 

=7k M(2k-k) 

=7k 

Since k=log2n  
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M(n)= 7 log2n 

=n log27 

≈ n2.807   

Which is smaller than n3 required by the brute force algorithm. 

Numbers of multiplications are reduced by making extra additions. 

To multiply two matrices of order n>1 , the algorithm needs to multiply seven matrices of 

order n/2 and make 18 additions of matrices of size n/2. 

When n = 1 , no additions are made since two numbers are simply multiplied. 

The number of additions A(n) made by the Strassen’s algorithm given by recurrence 

A(n) = 7A(n/2) + 18(n/2) , for n > 1 

A(1) = 0 

According to the Master Theorem. 

A(n)  ∈  ϴ( n log2n) 

 

In other words, the number of additions has the same order of growth as the number of 

multiplications. 

As a result, Strassen’s algorithm in ϴ( n log2n), which is a better efficiency class than ϴ(n2)  

or the brute force method. 

 

11. Write an algorithm for performing The Closest-Pair and  Convex-Hull Problems by 

      Divide-and-Conquer.   Dec 2005/2007/2010/2012/2013 or Write the algorithm to find the 

closest pair of points using divide and conquer and explain it with an example. Derive the 

worst case and average case time complexity    Nov/Dec 2019 

 

      Definition  

There exits a set of points on a plane which is said to be convex if for any two points A and B in the 

set , the entire line segment with the end points at A and B belongs to the set  

       Example 

 
Is a convex hull  Is not a convex hull 

 

The convex – hull problem of finding the smallest convex polygon that contains given n 

points in a plane can be solved using divide and conquer method.  

This version of solving convex hull problem is called quick hull because this method is based on 

quick sort technique. 

 

Algorithm 
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Step 1 : Sort the points ( p1 ,p2 ,p3,…pn) by their x – coordinates 

Step 2 : Repeatedly find the convex hull through p1 to p n/2 

Step 3 : Repeatedly find the convex hull through p n/2+1 to p n 

Step 4 : Merge the two convex hulls 

 

The Closest-Pair Problem 

 Let P be a set of n > 1 points in the Cartesian plane.  

 For the sake of simplicity, we assume that the points are distinct.  

 If 2 ≤ n ≤ 3, the problem can be solved by the obvious brute-force algorithm. 

 If n > 3, we can divide the points into two subsets Pl and Pr of n/2 and n/2 points,  

respectively, by drawing a vertical line through the median m of their x coordinates so that 

n/2 points lie to the left of or on the line itself, and n/2 points lie to the right of or on the line. 

 

Then we can solve the closest-pair problem recursively for subsets Pl and Pr .  

Let dl and dr be the smallest distances between pairs of points in Pl and Pr, respectively, and 

let d = min{ dl , dr }.  

 

Note that d is not necessarily the smallest distance between all the point pairs because points of a 

closer pair can lie on the opposite sides of the separating line.  

 

 
 Let S be the list of points inside the strip of width 2d around the separating line, obtained from Q and 

hence ordered in non decreasing order of their y coordinate. 

 We will scan this list, updating the information about dmin, the minimum distance seen so far, if we 

encounter a closer pair of points. 

 Initially, dmin = d, and subsequently dmin ≤ d. Let p(x, y) be a point on this list.  

 For a point p(x, y) to have a chance to be closer to p than dmin, the point must follow p on list S and 

the difference between their y coordinates must be less than dmin.  

 

ALGORITHM EfficientClosestPair(P, Q) 

//Solves the closest-pair problem by divide-and-conquer 

//Input: An array P of n ≥ 2 points in the Cartesian plane //sorted in non decreasing order of 

their x coordinates and an //array Q of the same points sorted in non decreasing order of //the 

y coordinates 
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//Output: Euclidean distance between the closest pair of //points 

if n ≤ 3 

return the minimal distance found by the brute-force algorithm 

else 

copy the first _n/2_ points of P to array Pl 

copy the same _n/2_ points from Q to array Ql 

copy the remaining _n/2_ points of P to array Pr 

copy the same _n/2_ points from Q to array Qr 

dl←EfficientClosestPair(Pl, Ql) 

dr←EfficientClosestPair(Pr, Qr) 

d ←min{dl, dr} 

m←P[_n/2_ − 1].x 

copy all the points of Q for which |x − m| < d into array S[0..num − 1] 

dminsq ←d2 

for i ←0 to num − 2 do 

k←i + 1 

while k ≤ num − 1 and (S[k].y − S[i].y)2 < dminsq 

dminsq ←min((S[k].x − S[i].x)2+ (S[k].y − S[i].y)2, dminsq) 

k←k + 1 

return sqrt(dminsq) 

The algorithm spends linear time both for dividing the problem into two problems half the 

size and combining the obtained solutions.  

Therefore, assuming as usual that n is a power of 2, we have the following recurrence for the 

running time of the algorithm: 

 

T (n) = 2T (n/2) + f (n),    where f (n) ∈ Ө(n).  

 

Applying the Master Theorem (with a = 2, b = 2, and d = 1),  

 

we get T (n) ∈ Ө(n log n).  

The necessity to presort input points does not change the overall efficiency class if sorting is 

done by a O(n log n) algorithm such as merge sort.  

  

Convex-Hull Problem 

 Let S be a set of n>1 points p1(x1, y1), . . . , pn (xn, yn) in the Cartesian plane.We 

assume that the points are sorted in non decreasing order of their x coordinates, with ties resolved by 

increasing order of the y coordinates of the points involved.  

 It is not difficult to prove the geometrically obvious fact that the leftmost point p1 and 

the rightmost point pn are two distinct extreme points of the set’s convex hull (Figure 5.8).  

Let p1 pn be the straight line through point’s p1 and pn directed from p1to pn.  

This line separates the points of S into two sets:  

S1 is the set of points to the left of this line, and S2 is the set of points to the right of this 

line. We say that point q3 is to the left of the line  q1q2 directed from point q1 to point q2 if q1 q2 

q3 forms a counterclockwise cycle. 

 Later, we cite an analytical way to check this condition, based on checking the sign of a 

determinant formed by the coordinates of the three points. 

The points of S on the line p1 pn, other than p1 and  pn, cannot be extreme points of the 

convex hull and hence are excluded from further consideration. 
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Fig Upper and lower hulls of a set of points 

 

 

The boundary of the convex hull of S is made up of two polygonal chains: an “upper” 

boundary and a “lower” boundary.  

The “upper” boundary, called the upper hull, is a sequence of line segments with vertices at 

p1, some of the points in S1 (if S1 is not empty) and pn.  

The “lower” boundary, called the lower hull, is a sequence of line segments with vertices at 

p1, some of the points in S2 (if S2 is not empty) and pn.  

The fact that the convex hull of the entire set S is composed of the upper and lower hulls, 

which can be constructed independently. 

 

Construction of upper hull: 

If S1 is empty, the upper hull is simply the line segment with the endpoints at p1 and pn.  

If S1 is not empty, the algorithm identifies point pmax in S1, which is the farthest from the 

line  p1 pn .  

If there is a tie, the point that maximizes the angle pmax p pn can be selected. (Note that 

point pmax maximizes the area of the triangle with two vertices at p1and pn and the third one at 

some other point of S1.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Then the algorithm identifies all the points of set S1 that are to the left of the line  p1 pmax; 

these are the points that will make up the set S1,The points of S1 to the left of the line pmax 

pn will make up the set S1 

 It is not difficult to prove the following: pmax is a vertex of the upper hull. 

 The points inside p1 pmax pn cannot be vertices of the upper hull (and hence can be 

eliminated from further consideration). 

 There are no points to the left of both lines p1 pmax and pmax pn. 

 Therefore, the algorithm can continue constructing the upper hulls of p1 U S1,1 Upmax and 

pmax U S1,2 U pn recursively and then simply concatenate them to get the upper hull of the 

entire set p1 U S1 U pn. 

 If q1(x1, y1), q2(x2, y2), and q3(x3, y3) are three arbitrary points in the Cartesian plane, then 

the area of the triangle q1q2q3 is equal to one-half of the magnitude of the determinant 

 

 x1   y1  1 

P

1

1 

Pm

ax1 

P

n

1 
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x2   y2   1 = x1 y2 + x3 y1 + x2 y3− x3 y2 − x2 y1− x1 y3 

x3   y3   1 

 

while the sign of this expression is positive if and only if the point q3 = (x3, y3) is to the left of the 

line q1 q2.  

Using this formula, we can check in constant time whether a point lies to the left of the line 

determined by two other points as well as find the distance from the point to the line. 

 

Example 2: 

The merge procedure requires finding a bridge between two hulls that are adjacent to each other . 

concatenate left part of left hull and right part of right hull 
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Quick hull has the same Ө(n log n) worst-case efficiency as quick sort.In the average case Ө(n2), 

however, we should expect a much better performance.  

The average-case efficiency of quick hull turns out to be linear.  ‘n’ its computing time is O(n2). 

 

 

 

 

 

 

 

 

 

 

12. Sort the following set of elements using merge sort : 12, 2, 8, 71, 4, 23, 6, 89, 56   

        Jun 2014 
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                                  12    2    8   71    4    23   6   89   56 

 

        12    2     8     71    4                    23    6     89    56 

 

        12    2     8               71     4              23     6          89      56 

 

 

12      2           8     71      4             23     6          89      56 

 

 

12      2           8     71      4             23     6          89      56 

 Swapping 

2        12     8              4         71            6     23        56      89 

 

2        12     8              4         71            6     23        56      89 

 

 

   2    8    12                        4   71                 6  23          56    89 

 

             2   4   8   12   71                                    6   23   56  89 

 

                           2   4   6    8   12   56   71   89 

   

 

13. Distinguish between quick sort and merge sort and arrange the following numbers in 

increasing order using merge sort (18, 29, 68,  32, 43, 37, 87, 24, 47, 50).   Jun 2013 

 

Quicksort 

 

Quicksort is another divide and conquer sorting algorithm, proposed by C. A. R. Hoare. 

Here, the workhorse is the partition operation. Given an array of n elements, partition takes one 

element (known as the pivot) and places it in the correct position.  

That is, the array will not be sorted, but all the elements less than the pivot will be to the left 

of the pivot, and all the elements greater than the pivot will be to the right. The partition operation 

can be performed in linear time. 

Quicksort then works as follows. First, it performs the partition operation on the input array. 

Assume the pivot is placed in position p.  

Now, quicksort sorts the sub-arrays A[0 : p - 1] and A[p + 1 : n - 1], using quicksort itself. 

Here again, the base case is an array of size 1. 

 

Various ways of selecting the pivot: 
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The simplest is to just take the left-most element every time as the pivot. But, this leads to a 

fatal weakness.  

In this case, if the array is already sorted, the pivot will get placed in the left most position 

always, and quicksort will be sorting sub-lists of size 0 and n - 1. 

This leads to a time complexity of O(n^2), which is no better than bubble sort. 

This can be mitigated by choosing a random element as the pivot, or using the median of 

three elements. In this case, the worst case time of O(n^2) is extremely unlikely.  

In the best case, when the pivot is always placed in the middle, the time complexity will be 

O(n log n).  

Also, if the pivot always gets placed somewhere in the middle 50% (25% - 75%) part of the 

array, quick sort will take time proportional to O(n log n), even as in the best case. 

 

Advantage of quick sort:   

 

Even though the asymptotic complexities are O(n log n), the constant muliplier (hidden by 

the Big Oh notation) is much smaller for quicksort, which subsequently is appreciably faster than 

mergesort in almost all cases. 

Regarding space complexity, the space complexity of quicksort is O(log n), taking into 

account the stack space used for recursion. 

 

Mergesort 

 

The real work of mergesort is done by the merge  operation. Given two sorted sub-arrays, 

together having a total of n  elements,the merge operation uses an auxiliary array of size n  to 

mergethem together into a single sorted array in linear time i.e. O(n) in Big Oh notation. 

Having this merge operation, mergesort works as follows.  

Given an array of elements A, it sorts the left and right sub-arrays using mergesort itself, and 

then merges them together into one single sorted array.  

The base case is a sub-array of size 1, which is implicitly sorted by definition. 

If we analyze the time complexity of mergesort, it is O(n log n) in all cases. That is, the time 

taken to sort n elements grows proportionally to n log n. 

Merge sort also needs an extra array of size n for the merge operation. So its space 

complexity is O(n). 

Also, quicksort cannot be implemented iteratively, unlike mergesort, where an iterative 

implementation, sometimes called bottom-up mergesort, is possible. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

18    29    68    32    43    37    87    24    47   50 

37    87    24    47   50 18    29    68    32    43     

   32    43     18    29    68      47   50 37    87    24     
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14.A pair contains two numbers and second number is on right side of the first one in an 

array.the difference of a pair is the minus result while subtracting the second number from the 

first one.implement a function which gets the maximal difference of all pairs in array (using 

divide and conquer method) (AU april/may 2015) 

 We divide an array into two sub-arrays with same size.  

The maximal difference of all pairs occurs in one of the three following situations:  

(1) two numbers of a pair are both in the first sub-array;  

(2) two numbers of a pair are both in the second sub-array;  

(3) the minuend is in the greatest number in the first sub-array, and the subtrahend is the least 

number in the second sub-array.   
 

It is not a difficult to get the maximal number in the first sub-array and the minimal number in the 

second sub-array. How about to get the maximal difference of all pairs in two sub-arrays?  

They are actually sub-problems of the original problem, and we can solve them via recursion. The 

following are the sample code of this solution: 

int MaxDiff_Solution1(int numbers[], unsigned length) 

{ 

    if(numbers == NULL || length < 2) 

        return 0; 

 

    int max, min; 

    return MaxDiffCore(numbers, numbers + length - 1, &max, &min); 

68      18    29        32      43      24      37    87       47      50      

18      29      68      32      43      37     87      24      47      50      

18      29      68

 

      

32      43     37     87      24      47      50      

68      18    29        32      43      24      37    87       47      50      

   32    43     
18    29    68      47   50 24   37    87    

24     

24    37    47    50    87  18    29    32    43    68        

18    24     29    32    37    43    47    50     68      87 
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} 

 

int MaxDiffCore(int* start, int* end, int* max, int* min) 

{ 

    if(end == start) 

    { 

        *max = *min = *start; 

        return 0x80000000; 

    } 

 

    int* middle = start + (end - start) / 2; 

 

    int maxLeft, minLeft; 

    int leftDiff = MaxDiffCore(start, middle, &maxLeft, &minLeft); 

 

    int maxRight, minRight; 

    int rightDiff = MaxDiffCore(middle + 1, end, &maxRight, &minRight); 

 

    int crossDiff = maxLeft - minRight; 

 

    *max = (maxLeft > maxRight) ? maxLeft : maxRight; 

    *min = (minLeft < minRight) ? minLeft : minRight; 

 

    int maxDiff = (leftDiff > rightDiff) ? leftDiff : rightDiff; 

    maxDiff = (maxDiff > crossDiff) ? maxDiff : crossDiff; 

    return maxDiff; 

} 

 

In the function MaxDiffCore, we get the maximal difference of pairs in the first sub-array (leftDiff), 

and then get the maximal difference of pairs in the second sub-array (rightDiff).  

We continue to calculate the difference between the maximum in the first sub-array and the minimal 

number in the second sub-array (crossDiff). The greatest value of the three differences is the 

maximal difference of the whole array. 

We can get the minimal and maximal numbers, as well as their difference in O(1) time, based on the 

result of two sub-arrays, so the time complexity of the recursive solution is T(n)=2(n/2)+O(1). We 

can demonstrate its time complexity is O(n). 

 

  

15.Explain the method used for performing Multiplication of two large integers.Explain how divide  

     and  conquer method can be used to solve the same. (16) 

 

 Some applications like modern cryptography require manipulation of integers that are over 

100 decimal digits long. Since such integers are too long to fit in a single word of a modern 

computer, they require special treatment. 

In the conventional pen-and-pencil algorithm for multiplying two n-digit integers, each of 

the n digits of the first number is multiplied by each of the n digits of the second number for the 

total of n
2
 digit multiplications. 

The divide-and-conquer method does the above multiplication in less than n
2
 digit 

multiplications. 

Example: 23 ∗ 14 = (2 · 10
1
 + 3 · 10

0
) ∗ (1 · 10

1
 + 4 · 10

0
) 

= (2 ∗ 1)10
2
 + (2 ∗ 4 + 3 ∗ 1)10

1
 + (3 ∗ 4)10

0
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= 2· 10
2
 + 11· 10

1
 + 12· 10

0
 

= 3· 10
2
 + 2· 10

1
 + 2· 10

0
 

= 322 

The term (2 ∗ 1 + 3 ∗ 4) computed as 2 ∗ 4 + 3 ∗ 1= (2 + 3) ∗ (1+ 4) – (2 ∗ 1) − (3 ∗ 4). Here 

(2 ∗ 1) and (3 ∗ 4) are already computed used. So only one multiplication only we have to do. 

 

For any pair of two-digit numbers a = a1a0 and b = b1b0, their product c can be computed by 

the formula c = a ∗ b = c210
2
 + c110

1
 + c0, 

where 

c2 = a1 ∗ b1 is the product of their first digits, 

c0 = a0 ∗ b0 is the product of their second digits, 

c1 = (a1 + a0) ∗ (b1 + b0) − (c2 + c0) is the product of the sum of the 

a’s digits and the sum of the b’s digits minus the sum of c2 and c0. 

 

Now we apply this trick to multiplying two n-digit integers a and b where n is a positive 

even number. Let us divide both numbers in the middle to take advantage of the divide-and- 

conquer technique.  

We denote the first half of the a’s digits by a1 and the second half by a0; for b,the notations are b1

 and b0, respectively. In these notations, a = a1a0 implies that a = a110
n/2

 + a0 

and b = b1b0 implies that b = b110
n/2

 + b0.  

Therefore, taking advantage of the same trick we used fortwo-digit numbers, we get 

C = a ∗ b = (a110
n/2

 + a0) * (b110
n/2

 + b0) 

= (a1 * b1)10
n
 + (a1 * b0 + a0 * b1)10

n/2
 + (a0 * b0) 

= c210
n
 + c110

n/2
 + c0, 

where 

c2 = a1 * b1 is the product of their first halves, 

c0 = a0 * b0 is the product of their second halves, 

c1 = (a1 + a0) * (b1 + b0) − (c2 + c0) 

 

If n/2 is even, we can apply the same method for computing the products c2, c0, and c1

. 

Thus, if n is a power of 2, we have a recursive algorithm for computing the product of two n-digit 

integers. In its pure form, the recursion is stopped when n becomes 1. It can also be stopped when 

we deem n small enough to multiply the numbers of that size directly. 

 

The multiplication of n-digit numbers requires three multiplications of n/2-digit numbers, 

the recurrence for the number of multiplications M(n) is M(n) = 3M(n/2) for n > 1, M(1) = 1. 

Solving it by backward substitutions for n = 2
k
 yields 

 

M(2
k
) = 3M(2

k−1
) 

= 3[3M(2
k−2

)] 

= 3
2
M(2

k−2
) 

= ... 

= 3
i
M(2

k−i
) 

= ... 

= 3
k
M(2

k−k
) 
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= 3
k
. 

(Since k = log2 n) 

M(n) = 3log2 
n
 = nlog2 

3
 ≈ n

1.585.
 

 

(On the last step, we took advantage of the following property of logarithms: a
log

b 
c
 = c

log
b 

a
.) 

Let A(n) be the number of digit additions and subtractions executed by the above algorithm 

in multiplying two ndigit decimal integers. Besides 3A(n/2) of these operations needed to  

computethe three products of n/2digit numbers, the above formulas require five additions a

nd one subtraction. Hence, we have the recurrence 

A(n) = 3·A(n/2) + cn for n > 1, A(1) = 1. 

By using Master Theorem, we obtain A(n) ∈ Θ(nlog2 
3
), 

which means that the total number of additions and subtractions have the same asymptotic 

order of growth as the number of multiplications. 

 

Example: For instance: a = 2345, b = 6137, i.e., n=4. 

Then C = a * b = (23*10
2
+45)*(61*10

2
+37) 

C = a ∗  b = (a110
n/2

 + a0) * (b110
n/2

 + b0) 

= (a1 * b1)10
n
 + (a1 * b0 + a0 * b1)10

n/2
 + (a0 * b0) 

= (23 * 61)10
4
 + (23 * 37 + 45 * 61)10

2
 + (45 * 37) 

= 1403•10
4
 + 3596•10

2
 + 1665 

= 14391265 

16. Let x1< x2 < . . . < xn be real numbers representing coordinates of n villages located 

along a straight road. A post office needs to be built in one of these villages. a) Design an 

efficient algorithm to find the post-office location minimizing the average distance 

between the villages and the post office. (april/May 2021) 

Algorthm : 

Algorithm PostOffice(P) 

 

    m <- (x1+xn) / 2 

    i <- 1 

    while xi < m do 

        i <- i+1 

    if xi - x1 < xn - xi-1 

        return xi 

    else return xi-1 
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IMPORTANT QUESTIONS 

Part A 

1. What is the time complexity of Binary search?       June 2011 & 12 

2. Give the recurrence equation for the worst case behavior of   merge sort?        Dec 2010 

3. What do you meant by Divide and conquer strategy?     May 2013  

4. Give the time efficiency and drawback of merge sort algorithm? Dec 2005  

5. What is the difference between quick sort and merge sort?  May 2013  

6. What is the difference between sequential and binary search  Apr 2013  

7. List out two drawbacks of binary search algorithm.  Dec 2007  

8. Give the control abstraction for divide and conquer.  Dec 2012 

9. What is called substitution method?  Jun 2010  

10. What is called optimal solution?   Jun 2010  

11. What do you mean by divide and conquer strategy? Jun 2013  

12. State the principle of substitution method? Jun 2014 

13. Define feasible and  optimal solution? Jun 2014  

14. Trace the operation of binary search algorithm for the input –   15, -6, 0, 7, 9, 23, 54, 82, 101,   

       112, 125, 131, 142, 151, if you  are searching for  the element 9.   Dec 2010 

15. Define Brute Force method  

16. State the concept of   Closest-Pair and Convex-Hull Problems 

17. What is mean by Exhaustive Search and give the types 

18. What is Travelling Salesman Problem? 

19. What is knapsack? 

20. What is assignment problem? 

21. Is merge sort stable sorting algorithm? 

22. What is the difference between quick sort and merge sort? 

23. Define Stassen’s Matrix Multiplication  

 

Part B 

1. Write an algorithm for performing The Closest-Pair and Convex-Hull Problems by Divide- 

and-Conquer2013,12,11  

2. Write an algorithm to perform binary search on a sorted list of elements.  Analyse the  

algorithm for the best case , worst case and average case. May 2011 / Dec 2008 

Or 

     What is divide and conquer strategy and explain the binary search with suitable example   

       problem.                            Dec 2011 

                      Or  

      Differentiate sequential search from binary search technique. May 2009  

3. Briefly explain the procedure for strassen’s matrix  multiplication.  Mar2014  

4. Trace the steps of merge sort algorithm for the elements 122,  25, 70, 175, 89, 90, 95, 102, 123  

    and also compute its time complexity.  Dec 2012  

5. Explain the binary search algorithm with an example. And find  the best, average and worst 

   case complexity.     Dec 2012  

6. Explain merge sort problem using divide and conquer technique example. Apr2010 

7. Write a pseudo code using divide and conquer technique for finding the position of the 

     largest element in the array of N  numbers.  Jun 2014  

8. Sort the following set of elements using merge sort :12,2,8,71,4,23, 6, 89, 56 Jun14 

9. Distinguish between quick sort and merge sort and arrange the  following numbers in  

    increasing order using merge sort (18, 29,68,  32, 43, 37, 87, 24, 47, 50). Jun13  

10.Explain the method of multiplication of large numbers with the help of illustrate example 

11.Write an algorithm for performing matrix multiplication using Strassen’s Matrix   

    Multiplication 

12.Write an algorithm for performing The Closest-Pair and Convex-Hull Problems by Divide- 
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     and-Conquer.  May 2011/2012/2013  

 

ANNA UNIVERSITY APRIL/MAY 2015 

PART-A 

1. Design a brute force algorithm for computing the value of a polynomial  Refer Q. No. 39 

2. Derive complexity of binary search algorithm. Refer Q. No. 40 

 

PART-B 

1. a) A pair contains two numbers and second number is on right side of the first one in an array.the 

       difference of a pair is the minus result while subtracting the second number from the first  

        one.implement a function which gets the maximal difference of all pairs in array (using divide  

       and conquer method) Refer Q. No. 21 

   b) Explain convex hull problem and the solution involved behind it.  Refer – Q. No. 2  

  

ANNA UNIVERSITY NOV/DEC 2015 

PART-A 

 

1. Give the mathematical notation to determine if a convex direction is towards left or right and write  

   the algorithm. Refer Q. No. 45 

2.Prove that any comparison sort algorithm requires Ω ( n log n) comparisons in the worst case. 

Refer Q. No. 44 

PART-B 

 

1.a.(i) Write the algorithm to perform binary  search and compute its run time complexity.(8) 

    Refer Q. No. 7 

      (ii)Compute multiplication of given two matrices using mstrassen’s matrics multiplication  

             method: Refer Q. No. 9 

     
 

b   (i) Write doun the algorithm to construct a convex hull based on divide and conquer strategy.(8) 

Refer Q. No. 10 
     (ii)Find the optimal solution to the fractional knapsack problem with given data: ReferQ.No. 3(2) 

   
 

 

ANNA UNIVERSITY APRIL/MAY 2016 

 

PART-A 

 

1. Give the General strategy divide and conquer method. Refer Q. No. 41 

2. What is Closest-Pair Problem? Refer Q. No. 4 

 

PART-B 

1. (a) Explain the method used for performing Multiplication of two large integers.Explain how  
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     Divide and conquer method can be used to solve the same.(16) Refer Q. No. 14 

OR 

     (b) State and Explain Mergesort algorithm and give the recurrence relation and Efficiency (16) 

          Refer Q. No. 4(1) 
 

ANNA UNIVERSITY NOV/DEC 2016 

 

PART-A 

1. write an algorithm for brute force closest-pair problem Refer Q. No. 43 

2. what is worst case complexity of binary search? Refer Q. No. 13 

 

PART-B 

1.(a) There are 4 people who need to be assigned to execute 4 jobs(one person per job)and the  

         Problem id to find an assignment with the minimum total cost. The assignment costs is given 

        Below, solve the assignment problem by exhaustive search. (16) Refer Q. No. 3(3) 

 
 

   b. Give the algorithm for quick sort. with an example show that quicksort is not a stable sorting  

algorithm.(16) Refer Q. No. 6 

 

ANNA UNIVERSITY APRIL/MAY 2017 
 

PART -A 

1. What is Closest-Pair Problem? Refer Q. No. 4 

2. Devise an algorithm to make for 1655 using the Greedy strategy. The coins available are { 

1000,500,100,50,20,10,5} Refer Q. No. 45 

 

PART -B 

1. What is divide and conquer strategy and explain the binary   search with suitable example   

problem.  Refer Q. No. 7 

2. Solve the following using Brute- Force algorithm 

Find whether the given string follows the specied pattern and return 0 or 1 accordingly  

Examples: 

 

(i). Pattern: “abba”, input:”redblueeredblue” should return 1 

(ii). Pattern: “aaaa”, input:”asdasdasdasd” should return 1 

     (iii). Pattern: “aabb”, input:”xyzabcxzyabc” should return 0 .  Refer Q. No. 7 

 

 PART -C 

1. Write the algorithm for Quick Sort and write its time complexity with example list are  

5, 3, 1,9, 8, 2, 4, 7. Refer Q. No. 6 

 

 ANNA UNIVERSITY NOV/DEC 2017 

 

PART-A 

1. Give the general plan of divide and conquer algorithm. Refer Q. No.41 

2. Write advantage of insertion sort? Refer Q. No.46 

 

PART-B 

1. Explain the brute force method to find the two closest points in a set of n points in K-Dimensional  
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   space   Refer Q. No.2 

2. Explain the working of Merge Sort Algorithm with an example.  Refer Q. No.5 

 

ANNA UNIVERSITY APRIL/MAY 2018 

 

PART-A 

 
1. What  is  an exhaust ive search ?  Refer Q. No.48 
2. State Master 's  t heorem.  Refer Q. No.49 
 

PART-B 

1. Explain Merge sort algorithm with an example. Refer Q. No.6 

2. Explain the working of Strassen's Matrix Multiplication with the help of divide and 

conquer method.  Refer Q. No.10 

 

ANNA UNIVERSITY NOV/DEC 2018 

 

PART-A 

1. What are the differences between dynamic programming and divide and conquer 

approaches? Refer Q. No.50 

2. Give an example for Hamiltonian circuit. Refer Q. No.51 

 

PART-B 

1. (a) Solve t ravelling salesman problem using brute force approach for the given 

example. How the solution can be obtained using branch and bound method?  

                                                                                                                   Refer Q. No.4 (10 + 3) 

 

Or 

(b) Write the algorithm for quick sort.  Provide a complete analysis of quick sort for 

the given set of numbers 12, 33, 23, 43, 44, 55, 64, 77 and 76.  Refer Q. No.7 

 

ANNA UNIVERSITY APRIL/MAY 2019 

 

PART-A 

1. Write brute force algorithm to string matching. Refer Q. No.52 

2. What is time and space complexity of merge sort? Refer Q. No.53 

 

PART-B 

1. What is convex hull problem? explain the brute force approach to solve convex hull with 

an example. derive the time complexity(2+7+4) Refer Q. No.3 

2. Write the quick sort algorithm and explain it wiyh example.derive the worst case and 

average case tiome complexity.(5+4+4) Refer Q. No.7 

ANNA UNIVERSITY NOV/DEC 2019 
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PART-A 

1. State the convex hull problem Refer Q. No.6 

2. Outline the knapsack problem Refer Q. No.9 

 

PART-B 

1.  State the travelling salesman problem. Elaborate the steps in solving the travelling salesman 

problem using brute force approach. Refer Q. No.4 

2. Write the algorithm to find the closest pair of points using divide and conquered and explain it 

with an example. Derive the worst case and average case time complexity. Refer Q. No.11 

 

PART-C 

1. Sort the following numbers using quick sort.  Refer Q. No.7 

999,888,777,666,555,444,333,222,111,11,22,33,44,55,66,77,88,99 

Illustrate each step in sorting process. 

ANNA UNIVERSITY NOV/DEC 2021 

PART-A 

 

1. Write an example problem that cannot be solved by brute-force algorithm. Justify your answer. It 

is often implemented by computers, but it cannot be used to solve complex problems such as 

the travelling salesman problem or the game of chess, because the number of alternatives is too 

large for any computer to handle. Refer  Q.No.54a 

2. Write the general divide and conquer approach to solve a problem. Refer  Q.No.41 

PART-B 

1.a) i) Consider the problem of counting, in a given text the number of substrings that start with an A 

and end with a B. For example, there are four such substrings in CABAAXBYA. Design a 

brute-force algorithm for this problem and determine its efficiency class.   Refer Q.No.2 

 

2.a) (i) Let x1 < x2 < ... < xn be real numbers representing coordinates of n villages located along a 

straight road. A post office needs to be built in one of these villages. Design an efficient 

algorithm to find the post-office location minimizing the average distance between the 

villages and the post-office. Refer Q.No.16 

(ii) Explain how exhaustive search can be applied to the sorting problem and determine the 

efficiency class of such an algorithm. Refer  Q.No.4   

 

2.b) (i) Write an algorithm using divide and conquer to search an element in a list of numbers. If the 

number is not present, the algorithm returns the closest number of the searches number. 

Refer  Q.No.8 
(ii) What is Strassen’s matrix multiplication and explain how it is solves the problem using 

divide and conquer technique. Refer  Q.No.12 

 

ANNA UNIVERSITY NOV/DEC 2021 

PART-A 

1. What is Travelling Salesman Problem? 

2. How binary search algorithm works. Refer Q. No. 40 

PART-B 
.1. (a) Elaborate how a brute force algorithm works with an example. (13) 

(b) Apply the merge sort algorithm to sort the following numbers in ascending 

order : 999,99,888,88,777,77,666,66,555,55,444,44,333,33,222,22,111, 11 

Illustrate each step of the sorting process. 

PART-C 

1.Outline the steps to solve the travelling sales man problem using branch and bound technique. 
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UNIT-III 

DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 

PART A 

1. Write the difference between Greedy method and Dynamic programming.  May 2011 

Compare and contrast dynamic programming and greedy method. (April/May 2021) 

Greedy Method Dynamic  Programming 

It  is  used  to  find  optimal  solution 

among all feasible solution 

Enumerable   all   decision   

sequences and then pick the best. 

Solutions to the sub problems do not 

have to be known at each stage. 

Choice  can  be  made  of  what  

looks best for the moment. 

 

2. Write an   algorithm  to  find  shortest  path  between  all pairs  of   nodes.  May 2011 

 
 

3. Write any two characteristics of Greedy Algorithm? 

 To  solve  a  problem  in  an  optimal  way  constructs  the  solution  from  given  set  

of candidates. 

 As the algorithm proceeds, two other sets get accumulated among this one set contains 

the candidates that have been already considered and chosen while the other set 

contains the candidates that have been considered but rejected. 

 

4. What is an optimal solution?       May 2010 

A feasible solution either maximizes or minimizes the given objective function is 

called as optimal solution 

 

5. What is Knapsack problem?       Dec 2011 

 A bag or sack is given capacity C and n objects are given.  

 Each object has weight w i  and profit p i  . 

 Fraction of object is considered as xi (i.e) 0 ≤ xi ≤1 . 

 If fraction is 1 then entire object is put into sack.  

 When we place this fraction into the sack we get wixi and pixi. 

 

6. Define weighted tree. 
A directed binary tree for which each edge is labeled with a real number (weight) is 
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called as weighted tree. 

 

7. What is the Greedy choice property? 

 The first component is greedy choice property (i.e.) a globally optimal solution can 

arrive at by making a locally optimal choice. 

 The choice made by greedy algorithm depends on choices made so far but it cannot 

depend on any future choices or on solution to the sub problem. It progresses in top 

down fashion. 

 

8. What is greedy algorithms?       Dec 2011 

  Greedy method is the most important design technique, which makes a choice that 

looks best at that moment.  

 A given ‘n’ inputs are required us to obtain a subset that satisfies some constraints 

that is the feasible solution.   

 A greedy method suggests that one can device an algorithm that works in stages 

considering one input at a time. 

 

9. State the general principle of greedy algorithm?    Dec 2010 Apr/May-2017 

 Determine the optimal substructure of the problem. 

 Develop a recursive solution. 

 Prove that at any stage of recursion one of the optimal choices is greedy 

choice. Thus it is always safe to make greedy choice. 

 Show that all but one of the sub problems induced by having made the 

greedy choice is empty. 

 Develop a recursive algorithm and convert into iterative algorithm. 

 

10. What is the limitation of Greedy algorithm?    May 2010 

• An optimization problem:  

– Given a problem instance, a set of constraints and an objective function.  

– Find a feasible solution for the given instance for which the objective function has 

an optimal value 

– either maximum or minimum depending on the problem being solved. 

• A feasible solution satisfies the problem’s constraints 

• The constraints specify the limitations on the required solutions.  

 

11. State  or Define the principle of optimality. Apr/May 2019    Dec 2010,Nov/Dec 2017 

The principle of optimality states that an optimal sequence of decisions has the property 

that whatever the initial state and decision are, the remaining decisions must constitute an 

optimal decision sequence with regard to the state resulting from the first decision. 

 

12. What is dynamic programming?or what do you mean by dynamic programming? Apr/May-

2017 

 Dynamic programming is typically applied to optimization problems. For a given 

problem we may get any number of solutions. from all those solutions we seek for 

optimum solution ( minimum value or maximum value solution).  

 And such an optimal solution becomes the solution to the given problem. 

 

 

13. Compare feasible and optimal solution       May 2008 

   Optimal solution    

A feasible solution either maximizes or minimizes the given objective 
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function is called as optimal solution 

Feasible Solution 

For solving the particular there exits n inputs and we need to obtain a subset that 

satisfies some constraints . then any subset that satisfies these constrains is called 

feasible solution. 

 

14. What are the Applications of Dynamic Programming? 

 Multistage Graph 

 Optimal Binary Search Tree (OBST) 

 0/1 Knapsack Problem 

 Travelling Salesman Problem. 

 All Pair Shortest Path Problem 

 

15. Define Warshall’s algorithm. 

Warshall’s algorithm is an application of dynamic programming technique which is used 

to find the transitive closure of a directed graph. 

 

16.  Define Floyd’s algorithm.or What does Floyd’s algorithm do? Nov/Dec 2017 

 Floyd’s algorithm is an application of dynamic programming, which is used to find 

the all pairs shortest path problem. 

 It is applicable to both directed and undirected weighted graph, but they do not 

contain a cycle of negative length. 

 

17.What are optimal binary search trees OBST?   May 2010 

 Let { a1, a2,….an} be a set of identifiers such that a1<a2<a3…let  p(i) be the 

probability with which we can search for ai is Successful  search. 

 Let , qi be the probability of searching an element x such that  

ai<x<ai+1 where 0≤i≤ n is unsuccessful search . thus p(i) is  

probability of successful search and q(i) is the probability of   

unsuccessful search.  

 Then a tree which is build with optimum cost from        

 is called optimal binary search tree  

 

18. What is a Feasible solution ?                           Dec 2013 / May 2014 

For solving the particular there exits n inputs and we need to obtain a subset that satisfies 

some constraints . then any subset that satisfies these constrains is called feasible 

solution. 

 

19. State the applications of Huffman ‘s tree 

      Application of Huffman trees:  

1. Huffman encoding is used in file compression algorithm  

2. Huffman’s code is used in transmission of data in an encoded form 

3. This encoding is used in game playing  method in which decision trees need to be 

formed 

 

subset paradigm ordering paradigm 

At each step the decision about the input is In this paradigm , the decision is made by 
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20 . Differentiate between subset paradigm and ordering  paradigm   Dec 2012 

 

21. What is the drawback of greedy algorithm ?                  May 2012 

 Greedy method is comparatively efficient than divide and conquer but there is no as 

such guarantee of getting optimum solution 

 In Greedy method , the optimum selection is without revising previously generated 

solutions  

 

22. Write control abstraction for the ordering paradigm.     May 2012 

Algorithm store (n, limit) 

{ 

j = 0; 

For( i ← 1 to n ) do  

{ 

Write (“append program”, i); 

Write (“permutation for tap “,j); 

j = ( j+1) mod limit ;  

} 

} 

 

23. What is minimum Spanning tree?        Dec 2010  APR 2018 

 A Minimum Spanning tree of a weighted graph connected graph G is its spanning tree 

of the smallest weight, where the weight of a tree is defined as the sum of the weights 

on all its edges. 

 The total number of edges in minimum spanning tree (MST) is |V|-1 where V is the 

number of vertices. 

 

24. Give any two properties of dynamic programming approaches. 

      Optimal substructure:  

The dynamic programming technique makes use principle of optimality to find the 

optimal solution from subproblems. 

       Overlapping Sub-problems:  

 The dynamic programming is a technique in which the problem   

 is divided into subproblems.  

 The solutions of subproblems are shared to get the final solution   

 to the problem.  

 It avoids repetition of work 

 

25. Give the commonly used designing steps for dynamic   programming algorithm? 

  Dynamic programming design involves 4 major steps 

 Characterize the structure of optimal solution. 

 Recursively defines the value of an optimal solution. 

 By using bottom up technique compute value of optimal solution. 

 Compute an optimal solution from computed information. 

 

26. What does dynamic programming have in common with divide    and conquer? 

o Both the divide and conquer and dynamic programming solve the problem by 

made. That means at each steps it is 

decided whether the particular input is in an 

optimal solution or not 

considering the inputs in some order . this 

paradigm is useful for solving those problems 

that do not call for selection of optimal subset 

in greedy manner 
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breaking it into number of sub-problems.  

o In both these methods solutions from sub-problems are collected together to form a 

solution to given problem. 

 

27. Define Catalan number. 

              The total number of binary search trees with n keys is equal to  

              nth catalan number. 

 C(n) = (2n to n)1/(n+1) for n>0 

 C(0) = 1 

 

28. State time and space efficiency of OBST. 

         Space Efficiency : Quadratic 

         Time Efficiency : Cubic 

29. Compare Greedy technique with dynamic programming  method. Dec 2012 – Q. No. 1 

 

  30. What is 0 / 1 knapsack problem.      Dec 2012 

Given a knapsack with maximum capacity W, and a set S consisting of n items 

 Each item i has some weight wi and benefit value bi (all wi, bi and W are integer 

values) 

 Problem: How to pack the knapsack to achieve maximum total value of packed 

items? 

 Problem, in other words, is to find ∑ bi subject to ∑ wi ≤ W 

 The problem is called a “0-1” problem, because each item must be entirely accepted 

or rejected. 

 

31. What is an optimal solution?    May 2010Refer Part A – Q. No. 4 

 

32. Define optimal binary search tree.    May 2010Refer Part A – Q. No. 17 

33. Define feasible and optimal solution.      Jun 2014 Refer Part A – Q. No. 13 

34. State the principle of optimality.             Jun 2014 / Dec 2010 Refer Part A – Q. No. 11 

35. List out the advantages of dynamic programming.           Jun 2014 

Dynamic programming enables you to develop sub solutions of a large program. 

The sub solutions are easier to maintain use and debug.And they possess overlapping also that 

means we can reuse  These sub solutions are optimal solutions for the problem 

36. What is knapsack problem? Jun 2013Refer Part A – Q. No. 5 

37. Write a note on Greedy approach.              Mar 2014 Refer Part A – Q. No. 8 

38. Define dynamic programming.         Mar 2014Refer Part A – Q. No. 12 

39. What is memory function?                                          Mar 2014 

Memory functions use a dynamic programming technique called memorization in order to 

relieve the inefficiency of recursion that might occur. 

It is based on the simple idea of calculating and storing solutions to sub problems so that the 

solutions can be reused later without recalculating the sub problems again.  

The best known example that takes advantage of memorization is an algorithm that computes the 

Fibonacci numbers. 

Recursive_Fibonacci (n) 

  {      

     if (n == 0) 

        return 0 

     else if ( n == 1) 

        return 1 

     else 
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        return Recursive_Fibonacci(n-1)+ Recursive_Fibonacci(n-2) 

  } 

    An algorithm that uses recursion,  runs in an exponential CPU time: 

 

40. State the general principle of greedy algorithm.              Dec 2010 Refer Part A – Q. No. 9 

41. Compare divide and conquer with dynamic programming and   Dynamic programming with  

        greedy technique.                Dec 2010 

Divide and Conquer Dynamic Programming 

The divide-and-conquer paradigm 

involves three steps at each level of the 

recursion: 

• Divide the problem into a number of sub 

problems. 

• Conquer the sub problems by solving 

them recursively. If the sub problem sizes 

are small enough, however, just solve the 

sub problems in a straightforward manner. 

• Combine the solutions to the sub 

problems into the solution for the original 

problem. 

The development of a dynamic-

programming algorithm can be broken 

into a sequence of four steps. 

a. Characterize the structure of an optimal 

solution. 

b. Recursively define the value of an 

optimal solution.  

c. Compute the value of an optimal 

solution in a bottom-up fashion. 

d. Construct an optimal solution from 

computed information 

They call themselves recursively one or 

more times to deal with closely related 

sub problems. 

Dynamic Programming is not recursive. 

D&C does more work on the sub-

problems and hence has more time 

consumption. 

DP solves the sub problems only once and 

then stores it in the table. 

In D&C the sub problems are independent 

of each other. 

In DP the sub-problems are not 

independent. 

Example: Merge Sort, Binary Search Example : Matrix chain multiplication 

 

Dynamic Programming Greedy Technique 

 

Focuses on principle of optimality. 

 

Greedy method focuses on expanding 

partially constructed solutions. 

 

It provides specific answers. 

 

It provides many results such as feasible 

solution. 

Less efficient More efficient 

 

42.Write doun the optimization techniques used for warshall’s algorithm.state the rules and  

     assumption which are implied behind that  (AU april/may 2015) 

Dynamic programming algorithms are used for optimization (for example, finding the shortest 

path between two points, or the fastest way to multiply many matrices). A dynamic programming 

algorithm will examine the previously solved subproblems and will combine their solutions to 

give the best solution for the given problem. The alternatives are many, such as using a greedy 

algorithm, which picks the locally optimal choice at each branch in the road. The locally optimal 

choice may be a poor choice for the overall solution. While a greedy algorithm does not 

guarantee an optimal solution, it is often faster to calculate. Fortunately, some greedy algorithms 

(such as minimum spanning trees) are proven to lead to the optimal solution. 

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Minimum_spanning_tree
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43. Define the single source shortest path problem. 

Dijkstra’s algorithm solves the single source shortest path problem of finding shortest paths 

from a given vertex( the source), to all the other vertices of a weighted graph or digraph. 

Dijkstra’s algorithm provides a correct solution for a graph with non negative weights. 
 

  44. State Assignment problem.         

         

There are n people who need to be assigned to execute n jobs, one person per job. (That is,each p

erson is assigned to exactly one job and each job is assigned to exactly one person.) The cost 

that would accrue if the ith person is assigned to the jth job is a known quantity  

 

𝐶[𝑖, 𝑗] for each pair 

  𝑖, 𝑗 = 1, 2, . . .  , 𝑛. The problem is to find an assignment with the minimum total cost. 

45.How to calculate the efficiency of dijkstra’s Algorithm? 

  The time efficiency of Dijkstra’s algorithm depends on the structure used for 

implementing the priority queue and for representing as input graph. 

 The efficiency is ϴ(|V|2) for graphs represented by their weight matrix and the priority 

queue implemented as an unordered array. 

 The efficiency is ϴ(|E|log|V|) for graphs represented by  the adjacency linked list and the 

priority queue implemented as a min heap. 

 Better efficiency can be achieved if priority  queue is implemented using a sophisticated 

data  structure called the Fibonacci Heap. 

 

46.State how binomial co-efficient is computes  

  
Computing a Binomial Coefficient is a typical example of applying dynamic programming in 

mathematics, particularly in combinatory. 

Binomial Coefficient is a Coefficient of any of the term in the expansion of (a+b)  n.   

The binomial coefficient is denoted by C(n, k) or   

The binomial coefficient is the number of combinations or subsets of K elements from an n 

element set(0≤ k ≥ n). 

The name binomial coefficient comes from the participation of these numbers in the binomial 

formula. 

The binomial formula is  
     (a+ b) n =C(n.0)a n +---+C(n, i) a n-1  b n +----+ C(n. n)b n. 

The binomial coefficient has several properties are. 

The three important properties are 

C(n, k)=C(n-1,k-1)+C(n-1,k),  for N>k>0 

C(n,0)= 1 
C(n, n)=1 

47.What is best algorithm suited to identity the topology for a graph.mention its efficiency   

     factors. 

An alternative algorithm for topological sorting is based on depth-first search. The algorithm loops 

through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates 

when it hits any node that has already been visited since the beginning of the topological sort or the 

node has no outgoing edges (i.e. a leaf node): 

The usual algorithms for topological sorting have running time linear in the number of nodes plus 

the number of edges, asymptotically, O(|V|+|E|) 

 

48.Define multistage graphs. Give an example. NOV-2018 

https://en.wikipedia.org/wiki/Depth-first_search
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The multistage graph problem is to find a minimum cost path from S to t. 

Problem description:  

A multistage graph G=(V,E) is a directed graph in which the vertices are portioned into K> 2 

disjoint sets Vi, 1<i<=K. 

if (u,v) is an edge in E, then u E Vi and VEVi+1 for some i., 1< = i< =K. 

The sets V1 and Vk are such that (V1)= VK/=1, Let S and t respectively the vertex in b1 and bk. 

The vertex S is the source, and t is the sin R.   Let C (i, j) be the cost of edge (i,j) 

The cost of a path from S to t is the sun of the cost of edges on the path. 

Each set vi defines a stage in the graph Because of the constraints on E. 

Every path from S to t starts in stage 1, goes to stage 2, then to stage 3, then to stage 4, etc., and 

finally  terminates in stage K. 

 

49. How dynamic programming is used to solve Knapsack problem? NOV-2018 

Dynamic programming is a method for solving  Optimization problems. 

The idea: 

Compute the solutions to the sub sub-problems once and store the solutions in a table, so that 

they can be reused (repeatedly) later 

 

 Structure 

 Principle of Optimality 

 Bottom-up computation 

 Construction of optimal solution 

50. Define transitive closure of a directed graph. APR-2018 

Transitive closure of a graph. Given a directed graph, find out if a vertex j is reachable from 

another vertex i for all vertex pairs (i, j) in the given graph. Here reachable mean that there is a 

path from vertex i to j. The reach-ability matrix is called transitive closure of a graph. 

 
51.What is the constraint of for binary search tree insertion? Aprl/May 2019 

A binary search tree is a tree with one additional constraint — it keeps the elements in the tree in 

a particular order. Formally each node in the BST has two children (if any are missing we 

consider it a nil node), a left child and a right child. 

 

52.Define Brute Force. Or What is brute force method     Nov/Dec 2019 

Brute Force is a straightforward approach to solve a problem, which is directly based on the 

problem statement and definition of the concepts. Brute Force strategy is one of the easiest 

approach. 

 

53.Define a binary search tree     Nov/Dec 2019 

A binary search tree (BST), also known as an ordered binary tree, is a node-based data structure 

in which each node has no more than two child nodes. Each child must either be a leaf node or 

the root of another binary search tree. The left sub-tree contains only nodes with keys less than 

the parent node; the right sub-tree contains only nodes with keys greater than the parent node. 
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The BST data structure is the basis for a number of highly efficient sorting and searching 

algorithms, and it can be used to construct more abstract data structures including sets, multisets, 

and associative arrays. 

54. What is meant by optimal substructure property of a dynamic programming problem. 

(April/May 2021) 

In computer science, a problem is said to have optimal substructure if an optimal solution can 

be constructed from optimal solutions of its subproblems. This property is used to determine 

the usefulness of dynamic programming and greedy algorithms for a problem. 

55. Write the control abstraction for greedy method. (April/May 2021) 

1. A selection of solution from the given input domain is performed, i.e. s:= select(a). 2. The 

feasibility of the solution is performed, by using feasible '(solution, s)' and then all feasible 

solutions are obtained.
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PART B 

 

1. Define dynamic programming and explain the problems that can be solved using dynamic  

    Programming. 

Synopsis:  

Introduction 

Problems that can be solved using dynamic programming  

Principle of optimality 

Computing a Binomial Coefficient 

Example 

Introduction: 

Dynamic Programming is an algorithm design technique. 

It was invented by a U.S. Mathematican Richard Bellman in the year 1950, as a general 

method for  optimizing multistage decision processes. 

Dynamic Programming is a technique for solving problems with overlapping sub problems. 

The smaller sub problems are solved only once and recording the results in a table from which 

the solution to the original problem is obtained. 

Problems that can be solved using dynamic programming: 

Various problems those can be solved using dynamic programming     are 

For computing nth Fibonacci number 

1. Computing binomial coefficient 

2. Warshall’s algorithm 

3. Floyd’s algorithm 

4. Optimal binary search trees 

Principle of optimality: 

The dynamic programming makes use of principle of optimality when finding solution to given 

problem.   

The principle of optimality states that “ in an optimal sequence of choices or decisions , each 

subsequence must also be optimal”. 

When it is not possible to apply principle of optimality, it is almost impossible to obtain the 

solution using dynamic programming approach. 

Example:  

While constructing optimal binary search tree we always select the value of k which is obtained 

from minimum cost. Thus it follows principle of optimality 

 

Computing a Binomial Coefficient:   

Computing a Binomial Coefficient is a typical example of applying dynamic programming in 

mathematics, particularly in combinatory. 

Binomial Coefficient is a Coefficient of any of the term in the expansion of (a+b)  n.   

The binomial coefficient is denoted by C(n, k) or   

The binomial coefficient is the number of combinations or subsets of K elements from an n 

element set(0≤ k ≥ n). 

The name binomial coefficient comes from the participation of these numbers in the binomial 

formula. 

The binomial formula is  

          (a+ b) n =C(n.0)a n +---+C(n, i) a n-1  b n +----+ C(n. n)b n. 

The binomial coefficient has several properties are. 

The three important properties are 

C(n, k)=C(n-1,k-1)+C(n-1,k),  for N>k>0 

C(n,0)= 1 

C(n, n)=1 



CS 6402 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 3 

  
 

     11 

Example:   Compute C(4,2) 

             Solution: 

                n=4, k=2 

                 C(4,2) = C(n-1,k-1)+C(n-1,k) 

                 C(4,2) =C(3,1) +C(3,2)  --------(1) 

             As there are two unknowns : C(3,1)  and C(3,2) in above   

             equation we will compute these sub instance of C(4, 2) 

             Therefore n=3  , k=1 

 C(3,1) =C(2,0) +C(2,1) 

 C(n, 0) = 1 we can write 

 C(2, 0) = 1 

 C(3, 1) = 1 + C(2,1) -------(2) 

             Hence let us compute C (2, 1) 

             Therefore n=2  , k=1 

 C(2,1) = C(n-1,k-1)+ C(n-1,k) 

 C(2,1) =C(1,0) +C(1,1) 

               But as C (n, 0) = 1 and C(n, n) = 1 we get  

 C( 1,0) = 1 and C( 1,1) = 1 

 C( 2,1) = C( 1, 0) + C( 1,1) 

   = 1 +1 

 C(2,1) = 2 ------------------(3) 

             Put the equation (2) and we get  

 C(3,1) =  1 +2 

 C(3,1) =  3 -------------------(4) 

          Now to solve equation 1 we will first compute C(3, 2) with n = 3   

          and k = 2. 

                Therefore  

 C(3,2) = C(n-1,k-1)+ C(n-1,k) 

           C( 3,2) = C( 2, 1) + C( 2,2) 

          But as C( n,n) = C( 2,2) = 1 , we will put values of C(2, 1)   

          obtained in equation (3) 

                 And C(2,2) in C(3,2) we get, 

 C( 3,2) = C( 2, 1) + C( 2,2) 

   = 2+ 1 

 C( 3,2) = 3 --------------------(5) 

                 Put equation (4 ) and (5) in equation , then we get  

 C( 4,2) = C( 3, 1) + C( 3,2) 

 C( 4,2) = 3  + 3 

                                  C(4,2) = 6  is the final answer  

 

2. How dynamic programming approach is used in binomial  coefficient? 

 

The recurrence equation C(n,k)=C(n-1,k-1)+C(n-1,k) expresses the problem of computing C(n,k) 

in terms of C(n-1,k-1) and C(n-1,k)  lends itself to solve by the dynamic programming technique. 

The values of the binomial coefficient are recorded in a table of n+1  rows and K+1 columns, 

numbered from 0 to n and from 0 to k respectively, which is shown in figure below 

 0 1 2 3 4 5 ……. k-1 K 

0 1         

1 1 1        

2 1 2 1       

3 1 3 3 1      

4 1 4 6 4 1     
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5 1         

:          

          

K 1        1 

:          

n-1 1       C(n-1,k-1) C(n-1,k) 

N 1        C(n,k) 

 

To compute the value of C(n,k), the table of figure is filled by row , starting with row 0 and 

ending with row n.  

Each row i(0≤ i ≤ n) is filled left to right, starting with 1 because C(n,0)=1. 

Rows 0 through k also end with 1 on the table’s main diagonal (ie) 

C(i,i)=1for 0≤ i ≤ k 

The other entries of the table is computed by using the formula C(n,k)=C(n-1,k-1)+C(n-1,k), for 

n>k>0 adding the contents of the cells in the preceding row and the previous column in the 

preceding row and the same column. 

 

Algorithm 

Algorithm Binomial(n,k) 

//Computes C(n,k) by the dynamic programming algorithm  

// Input: A pair of nonnegative integers n≥k≥0. 

//Output: The value of C(n,k) 

for i←0 to n do 

 for j   ←0 to min(i,k) do 

   if j=0 or j=k 

C[i,j] ←   1 

   else 

C[i,j] ←     C[i-1,j-1]+ C[i-1,j] 

  return C[n,k] 

Analysis: 

The basic operation is addition i.e. 

  C[ i,j] ← C[i – 1, j-1] +C[i- 1, j] 

Let A(n,k) denotes total additions made in computing C(n,k). 

In the table, first K+1 rows of the table form a triangle and the  remaining n-k rows form 

a rectangle.  

So the recurrence relation for A(n,k) is divided into the parts. 

The recurrence relation is, 

 
        

 
 

Therefore  
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         =    

                                           

 = [ 1 + 2 + 3 + ….( k-1)] + k    

                         = +k  

           = +k(n-(k + 1) + 1) 

       = +k(n-k - 1 + 1) 

      = +k(n-k ) 

                             = k2/ 2 – k/2 + nk - k2   

    =Θ(nk) 

    A(n,k) Є θ(nk) 

   Hence time complexity of binomial coefficient is Θ(nk) 

 

3. Explain the Warshall’s Algorithm. 

Warshall’s algorithm constructs the transitive closure of given diagraph with n vertices through a 

series of n × n boolean matrices.  

The computations in Warshall’s algorithm are given by following sequence, 

   R(0), . . . , R(k−1), R(k), . . . R(n).  

Thus the idea in Warshall’s algorithm is building of boolean matrices. 

Digraph : the  graph in which all the edges are directed then it is called digraph or directed graph 

.  

    Fig: Digraph 

Adjacency matrix : it is a representation of a graph by using matxi. If there exists an edge 

between the vertices Vi  and vj directing from vi to vj  then entry in adjacency matrix in ith row 

and jth colums is 1 

                                         
                                           adjacency matrix. 

Transitive closure : Transitive closure is  basically a boolean matrix ( matrix with 0 and 1 

values ) in which the existence of directed paths of arbitrary lengths between vertices is 

mentioned. 

As no edge from a to d , 

value is 0 

Edge from b to d 
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  transitive closure. 

The transitive closure can  be generated with Depth First Search (DFS) or with  Breadh First 

Search (BFS).  

This traversing can be done on any vertex.  

While computing  transitive closure we have to start with some vertex and have to find all the 

edges which are reachable to every other vertex . the reachable edges for all the vertices has to 

obtained  

 

Procedure to be followed : 

 Start with computation of R(0). In R(0)  any path with intermediate vertices is not allowed . 

the means only direct edges towards the vertices are  considered. in  other words the path 

length of one edge is allowed in R(0). Thus V R(0) is adjacency matrix for the diagraph. 

 Construct R(1) in which first vertex is used as intermediate vertex and a path length of two 

edges is allowed. Note that R(1) is build using R(0) which is already computed. 

 Go on building R(k) by adding one intermediate vertex each time and with  more path 

length . each R(k) has to be built from R(k-1). 

 The last matrix in this series is R(n), in this R(n) all yhe n vertices are used as intermediate 

vertices . and the R(n) which is obtained is nothing but the transitive closure of given 

digraph. 

 Let us understand this algorithm with some example 

 Obtain the transitive closure for the following digraph using Warshall’s algorithm.  

 

 
 

 Let us first obtain adjacency matrix for given digraph . it is denoted by  R(0)  . 
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Algorithm : 

Algorithm Warshall ( matrix [1..n, 1..n] 

//problem description : this algorithm is for computing  

//transitive closure using warshall’s algorithm  

//input: the adjacency matrix given by matrix [ 1..n , 1..n] 

//Output : the transitive closure of digraph 

R(0 )← Matrix  //  initially adjacency matrix of 

         //diagraph becomes R(0 ) 

        for (k ← 1 to n ) do 

{ 

   

for (i ← 1 to n ) do 

  { 

     for (j ← 1 to n ) do 
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   { 

    R(k) [ i, j]  ← R(k-1) [ i, j]   OR  R(k-1) [ i, k]     

                             AND R(k-1) [ k, j]    

         } 

} 

} 

return R(n) 

Analysis: 

 

Clearly  time complexity of above algorithm is Θ(n3) because in above algorithm the basic 

operation is computation of  R(k) [ i, j]. 

This operation is located within three nested for loops. 

 

The time complexity warshall ‘s algorithm is Θ(n3) 

 

4. Explain the Floyd’s algorithm. Or 

 (i) write the Floyd algorithm to find all pair shortest path and derive its time complexity(4+3) 

(ii)solve the following using floyd’s algorithm.(6)    Apr/May 2019 

 

 

 

 

 

 

 

 

 

Floyd’s algorithm is used for finding the shortest 

path between every pair of vertices of a graph. It is all 

pairs shortest path algorithm. 

The algorithm works for both directed and undirected 

graphs. This algorithm is invented by R.  Floyd 

hence is the name.  

Weighted graph: the weighted graph is a graph in which weights or distances are given along 

the edges. The weighted graph can be represented by weighted matrix as follows, 

 
Here  

w[i][j] = 0 if i=j 

W[i][j] =∞ if there is no edge ( directed edge) between i  

              and j . 

                  W[i][j] = weight of edge. 

 

Formulation: 

Let , Dk [i,j] denotes the weight of shortest path from vi to vj using {v1 , v2, v3…vk} as 

intermediate vertices. 

Initially D(k) is computed as weighted matrix 

There exits two case – 

V A B C d 

A 0 ∞ 3 ∞ 

B 2 0 ∞ ∞ 

C ∞ 7 0 1 

D 6 ∞ ∞ 0 
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1. A shortest path from  vi to vj  with intermediate vertices from {v1 , v2, v3…vk}  that does 

not use vk .  in this case  

Dk [i,j] = D(k-1)[i,j] 

2. A shortest path from  vi to vj  restricted  to using intermediate vertices  {v1 , v2, v3…vk}   

which uses vk. in this case- 

Dk [i,j] = D(k-1) [i,k] + D(k-1)  [k,j] 

 The graphical representation of these two case is shortest path  using vertices from {v1 , 

v2, v3…vk}   

 

 

 

 

Basic concept of Floyd’s algorithm: 

 

1. The Floyd’s algorithm is for computing shortest path between every pair of vertices of 

graph. 

2. The graph may contain negative edges but it should not contain negative cycles. 

3. The Floyds algorithm requires a weighted graph. 

4. Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices 

through a series of n × n matrices : 

 

D(0), . . . , D(k−1), D(k), . . . , D(n). 

 

In each matrix D(k) the shortest distance “dij” has to be computed between vertex vi and vj 

5. In particular the series starts with D(0) with no intermediate vertex. That means D(0)  is  a 

matrix in which vi and vj i.e.ith row and jth column contains the weights given by direct 

edges . in D(1)   matrix – the shortest distance going through one intermediate vertex ( 

starting vertex as intermediate) with maximum path length of 2 edges is given continuing 

in this fashion we will compute D(n), contains the lengths of shortest paths among all 

paths that can use all n vertices as intermediate. Thus we get all pair shortest paths from 

matrix D(n) 

 

Obtain the all pair – shortest path using Floyd’s algorithm for the  following weighted graph, 
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Algorithm: 

ALGORITHM Floyd(W[1..n, 1..n]) 

//Implements Floyd’s algorithm for the all-pairs shortest-paths //problem 

//Input: The weight matrix W of a graph with no negative-length //cycle 

//Output: The distance matrix of the shortest paths’ lengths 

D ←W //is not necessary if W can be overwritten 

for k←1 to n do 

{ 

for i ←1 to n do 

{ 

for j ←1 to n do 

{ 

D[i, j ]←min{D[i, j ], D[i, k]+ D[k, j]} 

} 

        } 

} 

return D 

 Analysis : 

  In the above given algorithm the basic operation is – 

D[i, j ]←min{D[i, j ], D[i, k]+ D[k, j]} 
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    This operation is within three nested for loops , we can write 

  C(n) =   

  C(n) =    therefore     

C(n) =   

  C(n) = n2 

  C(n) = n3   

The time complexity of finding all pair shortest path is Θ (n3)  

 

5. Write a pseudo code to find Optimal binary search trees using   dynamic  programming   

       (OBST)              May 2008/2011 & Dec 2013 may 2015 

    Or 

 Obtain a optimal binary search tree for following nodes (do, if ,  int , while) with following 

probabilities ( 0.1, 0.2 , 0.4, 0.3) 

Or 

(i) outline dynamic programming approach to solve the optimal binary search tree problem 

and analyse its time complexity 

(ii)construct the optimal binary search tree for the following 5 keys with probabilities as 

    indicated.    Nov/Dec 2019 

i 0 1 2 3 4 5 

Pi  0.15 0.10 0.05 0.10 0.20 

pj 0.05 0.10 0.05 0.05 0.05 0.10 

 

 A binary search tree is one of the most important data structures in computer science.  

 One of its principal application is to implement a dictionary, a set of 

elements with the operations of searching, insertion, and deletion.  

Example: 

Consider four keys A, B, C, and D to be searched for with probabilities 0.1, 0.2, 0.4, and 0.3, 

respectively.  

 
Figure  depicts two out of 14 possible binary search trees containing these keys.  

The average number of comparisons in a successful search in the first of these trees is 

0. 1+ 0.2 . 2 + 0.4 . 3+ 0.3 . 4 = 2.9, 

for the second one it is  

0. 2 + 0.2 . 1+ 0.4 . 2 + 0.3 . 3= 2.1.  

Neither of these two trees is, in fact, optimal. 

For our tiny example, we could find the optimal tree by generating all 14 binary search trees with 

these keys.  

As a general algorithm, this exhaustive-search approach is unrealistic: the total number of binary 

search trees with n keys is equal to the nth Catalan number, 

 
Optimal binary search tree 
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Definition  

 Let {a1, a2,….an} be a set of identifiers such that a1<a2<a3…let , p(i) be the 

probability with which we can search for ai is Successful  search. 

 Let qi be the probability of searching an element x such that ai<x<ai+1 where 0≤i≤ n 

is unsuccessful search. 

 Thus p(i) is probability of successful search and q(i) is the probability of 

unsuccessful search.  

 Then a tree which is build with optimum cost from  is called 

optimal binary search tree. 

 
 For such a binary search tree , the root contains key ak, the left subtree Ti 

k -1 contains 

keys ai, . . . , ak−1 optimally arranged, and the right subtree Tj
k+1 contains keys ak+1, . . . , aj 

also optimally arranged. 

 If we count tree levels starting with 1 to make the comparison numbers equal the keys’ 

levels, the following recurrence relation is obtained: 

 

 
Initially we assume that C[I ,i-1] = 0 for I ranging from 1 to n+1. 

Then set C[I, i] = pi where 1≤ i≤ j≤n.  

 

that means we have to two  tables in optimal binary search tree. 
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Table for cost .i.e ., cost table    table for root i.e. root table  

 

 

The cost table should be constructed as follows.  

 
 

  Fig :Table of the dynamic programming algorithm for constructing an  

         optimal binary search tree. 

1. Fill up C[i ,i-1 ] by 0 and C[ n+1, n] by 0 

2. Fill up C[i ,i ]  by p[i] 

3. Fill up C[i ,j] using formula 

 

 

 

EXAMPLE   

Obtain a optimal binary search tree for following nodes (do, if , int ,while) with following 

probabilities ( 0.1, 0.2 , 0.4, 0.3) 

 

  Solution  :  There are 4 nodes.  

     Hence n = 4  

 

 

    

   a[i] 

   p[i] 

 

 

 

 

Initial Tables : 
Cost Table :       0      1       2       3  4    

1 2 3 4 

0.1 0.2 0.4 0.3 
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    1 

 

                      

      2 

                         

                        

    3 

 

                        

    4  

                     

                        

    5 

 

 

 

 

 

Root Table                0   1    2   3      

      

    1 

     

     

    2 

     

     

    3 

 

    4  

 

 

Cost Table 

  C[ 1, 0] = 0    

  C[ 2, 1] = 0            

  C[ 3, 2] = 0       using formulae C[ i, i – 1] =0  and C[ n + 1,n] =0 

  C[ 4, 3] = 0 

  C[ 5, 4] = 0 

 

 

 

 

C[ 1, 1] = 0.1 

  C[ 2, 2] = 0.2  using formulae C[ i, i ] =p[i] 

  C[ 3, 3] = 0.4 

  C[ 4, 4] = 0.3 

 

 

The root table 

R[1, 1] =1 

  R[2, 2] =2  using formulae R[ i, i ] =i 

  R[3, 3] =3 

0 0.1    

0 0.2   

0 0.4  

0 0.3 

0 

1    

2   

3  

4 
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  R[4, 4] =4 

   

 

Now let us compute C[i, j] diagonally using formula 

   - -- (1)  

 

 

 

 

Compute C[ 1, 2 ]  

  The value of k can be either 1 or 2 

  Let  i = 1 , j = 2 , use formula in equation (1), 

 k= 1    

   C[1,2]= C[ 1,0] + C[2 ,2] + p[1] +p[2] 

             = 0 + 0.2 + 0.1 + 0.2 

             = 0.5 

 k=2 

   C[1,2]=C[ 1,1] + C[3 ,2] + p[1] +p[2] 

    = 0.1 + 0 + 0.1 + 0.2 

    = 0.4-> minimum value therefore consider k = 2 

   Therefore in cost table C[1,2] = 0.4 and R[1,2]=2 

 

Compute C[2, 3] 

  The value of k can be 2 or 3. 

  Let  i = 2, j = 3, use formula equation (1) 

 k = 2 

  C[2,3] =C[ 2,1] + C[3 ,3] + p[2] +p[3] 

             =0 + 0.4+ 0.2+ 0.4 

            =1.0 

 k=3 

  C[2,3]= C[ 2,2] + C[4 ,3] + p[2] +p[3] 

   = 0.2 + 0 + 0.2 + 0.4 

   = 0.8   -> minimum value therefore consider k = 3 

  Therefore in cost table C[2,3] = 0.8 and R[2,3]=3 

 

Compute C[3, 4] 

   The value of k can be 3 or 4. 

  Let , i = 3, j = 4, use formula equation (1) 

 k = 3 

  C[3,4]= C[ 3,2] + C[4 ,4] + p[3] +p[4] 

            = 0 + 0.3+ 0.4+ 0.3 

            = 1.0   ->  minimum value therefore consider k = 3 

 k=4 

  C[3,4]= C[ 3,3] + C[5 ,4] + p[3] +p[4] 

   = 0.4 + 0 + 0.4 + 0.3= 1.1    

  Therefore in cost table C[3,4] = 1.0  and R[3,4]=3 

The table contains values obtained upto this calculations 

 

 

Cost Table       0      1       2       3        4    

 

0 0.1 0.4   
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    1 

 

   

   2 

    

    

   3 

 

    

   4  

 

    

   5 

    

 

 

 

 

 

 

 

 

 

 

  Root Table 

                                          0      1      2       3    

   

     

     1 

     

     

    2 

     

     

    3 

     

     

    4  

 

 

 

 

Compute C[1,3]  

  The value of k can  be 1,2 or 3 

  Consider i=1 , j=3. 

  k=1 

   C[1,3] = C[ 1,0] + C[2 ,3] + p[1] +p[2] + p[3] 

              = 0 + 0.8 + 0.1 + 0.2 + 0.4 

              = 1.5 

  k =2  

   C[1,3]= C[ 1,1] + C[3 ,3] + p[1] +p[2] + p[3] 

0 0.2 0.8  

0 0.4 1.0 

0 0.3 

0 

1 2   

2 3  

3 3 

4 
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              = 0.1 + 0.4 + 0.1 + 0.2 + 0.4 

              = 1.2 

  k =3 

   C[1,3]= C[ 1,2] + C[4 ,3] + p[1] +p[2] + p[3] 

              = 0 .4+ 0 + 0.1 + 0.2 + 0.4 

              = 1.1-> minimum value therefore consider k = 3 

   Therefore C[1,3] = 1.1  and  R[1,3] = 3 

 

Compute C [2,4] 

   The value of k can be 2,3 or 4 

   Consider i=2, j=4 and using equation (1)  

  k=2 

   C[2,4]= C[ 2,1] + C[3 ,4] + p[2] +p[3] + p[4] 

              = 0 + 1.0 + 0.2 + 0.4 + 0.3 

              = 1.9 

  k =3  

   C[2,4]= C[ 2,2] + C[4 ,4] + p[2] +p[3] + p[4] 

              = 0.2 + 0.3 + 0.2 + 0.4 + 0.3 

              = 1.4 -> minimum value therefore consider k = 3 

  k =4 

   C[2,4]= C[ 2,3] + C[5 ,4] + p[2] +p[3] + p[4] 

              = 0 .8+ 0 + 0.2 + 0.4 + 0.3 

              = 1.7   

   Therefore C[2,4]= 1.4 and  R[2,4]=  3 

 

 

Cost Table 

         0      1       2       3        4    

 

    1 

 

    

   2 

    

    

    

   3 

 

    

   4  

 

    

   5 

      

 

Root Table 

                 0   1    2    3    

0 0.1 0.4 1.1  

0 0.2 0.8 1.4 

0 0.4 1.0 

0 0.3 

0 

1 2 3  
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   1 

 

    

   2 

 

    

   3 

 

    

   4 

 

 

Compute C[1,4] 

  The value of k can be 1, 2, 3 or 4. 

  Consider i=1, j=4 and using equation (1)  

   k=1 

   C[1,4] = C[ 1,0] + C[2 ,4] + p[1] + p[2] +p[3] + p[4] 

              = 0 + 1.4 + 0.1+ 0.2 + 0.4 +0.3 

              = 2.4 

   k =2 

C[1,4]= C[ 1,1] + C[3 ,4] + p[1] + p[2] +p[3] + p[4] 

  = 0.1 + 1.0 + 0.1 + 0.2 + 0.4 +0.3 

          = 2.1  

    k =3 

   C[1,4]= C[ 1,2] + C[4 ,4] + p[1] + p[2] +p[3] + p[4] 

              = 0.4 + 0.3 + 0.1 + 0.2 + 0.4 +0.3 

              = 1.7-> minimum value therefore consider k = 3 

    k=4 

   C[1,4]= C[ 1,3 + C[5 ,4] + p[1] + p[2] +p[3] + p[4] 

             = 1.3 + 0 + 0.1 + 0.2 + 0.4 +0.3 

              = 2.3   

   Therefore C[1,4]= 1.7 and  R[1,4]=  3 

 

 

 

Cost Table 

 

           0      1       2       3        4    

2 3 3 

3 3 

4 

0 0.1 0.4 1.1 1.7 

0 0.2 0.8 1.4 

0 0.4 1.0 

0 0.3 
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    1 

 

    

   2 

    

    

   3 

 

    

   4  

 

    

   5 

 

 

 

 

Root Table 

                  0   1    2    3    

 

     1 

 

          

     2 

 

      

     3 

 

      

     4 

To build a tree R[1][n] = R[1][4] =3 becomes 

root.  

 

     1      2     3               4 

  A[i]  

 

                                                            

             Key = 3 means int                                                       

  Therefore “int” becomes root  of optimal binary search tree.  

  The tree is  

 

 

         Value of key 

 

 

 

 

 

 

 

Here i =1 , j=4 and k=3.           

0 

1 2 3 3 

2 3 3 

3 3 

4 

Do If Int while 

Tk 

T[i, k-1] T[k + 1, j] 
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The tree can be with optimum cost C[1,4] = 1.7 

     

 

 

          

  

   

 

      

 

 

 

     Optimal binary search tree 

 

ALGORITHM 

ALGORITHM OptimalBST(P [1..n]) 

//Finds an optimal binary search tree by dynamic //programming 

//Input: An array P[1..n] of search probabilities for a sorted //list of n keys 

//Output: Average number of comparisons in successful //searches in the 

//optimal BST and table R of sub trees’ roots in the optimal //BST 

for i ←1 to n do 

{ 

C[i, i − 1]←0 

C[i, i]←P[i] 

R[i, i]←I  

}    

C[n + 1, n]←0 

for d ←1 to n − 1 do //diagonal count 

{ 

for i ←1 to n − d do 

{ 

j ←i + d 

minval←∞ 

for k←i to j do 

{ 

while if 

int 

 

do 

R[4,4]

=4 

R[1,2]

=2 

R[1,4]

=3 

 

R[1,1]

=1 
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if C[i, k − 1]+ C[k + 1, j]< minval 

{ 

minval←C[i, k − 1]+ C[k + 1, j];  

kmin←k 

R[i, j ]←kmin 

} 

} 

sum←P[i];  

for s ←i + 1 to j do  

sum←sum + P[s] 

C[i, j ]←minval + sum 

    return C[1, n], R 

}  

} 

Analysis: 

The basic operation in above algorithm is computation of C[i,j] by finding the minimum valued 

k. 

This operation is located within three nested for loops hence the time complexity C(n) can be 

    C(n) =   

                  = n3 

    C(n) = Θ (n3) 

Hence the time complexity of optimal binary search  algorithm is  C(n) = 

Θ (n3) 

 

6. Write the algorithm to compute the 0/1 knapsack problem using dynamic programming and  

      explain  it.         Dec 2010, Apr/May -2017  or  

write a greedy algorithm to solve the 0/1 knapsack problem.Analyse its time complexity.Show that 

this algorithm is not optimal with an example.(5+2+6)   Nov/Dec 2019 

 Given n items of known weights W1….. Wn  and values a knapsack of capacity W, find the most 

valuable subset of the items that fit into the knapsack. 

 Assume that the weights and the knapsack capacity are positive integers. 

 The item values do not have to be integers. 

 To design a dynamic programming algorithm, it is necessary to  derive a recurrence relation that 

expresses a solution to an instance of the  knapsack problem in terms of solutions to its smaller sub  

instances. 

The recurrence relation is, equation 

 

 

 

 

The initial conditions are equation (2)  

 
Our goal is to find F[n,w], the maximum value of a subset of the n items that fit into the 

knapsack of capacity w, and an optimal subset itself. 

  F[0,j] = 0 as well as F[i,0] = 0 when j≥0 and i≥0. 

The table can be filled by either row by row or column by column. 

 

 0 j- Wi j W 

0 0 0  0 

i-1 0 F[i-1,j- Wi] F[i-1,j]  
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         Wi Vi 

 

 

 

 

 

Example 

 

For the given instance of problem obtain the optimal solution for the knapsack problem 

 

Item Weight Value 

1 2 $3 

2 3 $4 

3 4 $5 

4 5 $6 

   

 

 The capacity of knapsack  is  W=5   

 Solution : 

Initially , F[0,j] = 0 and F[ I,0] = 0.  

There are 0 to n rows and 0 to W columns in the table.  

                         

      0       1      2       3  4     5 

 

        

    0 

          

     1 

     

     2 

             

      

      3 

             

     4 

 

 

Let us start filling the table row by row using following formula: 

 

 

 Compute F[1 , 1]  
with  i = 1 , j= 1 , wi = 2 and vi =3 

  As  j< wi  we will obtain  F[1,1] as 

    F[1,1]  = F[ i – 1, j] 

                 = F[ 0, 1] 

     F[1,1] = 0 

 Compute F[1 , 2]  with  i = 1 , j= 2 , wi = 2 and vi =3 

  As  j≥ wi  we will obtain  F[1,2] as 

   F[1,2]= Max{ F[i -1,j],vi + F [i-1, j-wi]} 

             = Max {F[ 0,2]) , ( 3 + F[ 0,0])} 

i 0  F[i,j]  

n 0   Goal 

0 0 0 0 0 0 

0      

0      

0      

0      
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             = Max{ 0, 3 + 0} 

                F[1,2] = 3 

Compute F[1 , 3]  with  i = 1 , j= 3 , wi = 2 and vi =3 

  As  j≥ wi  we will obtain  F[1,3] as 

    F[1,3]= Max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max {F[ 0,3]) , ( 3 + F[ 0,1])} 

               = Max{0, 3 + 0} 

            F[1,3] = 3 

Compute F[1 , 4]  with  i = 1 , j= 4 , wi = 2 and vi =3 

  As  j≥ wi  we will obtain  F[1,4] as 

    F[1,4] = Max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max {F[ 0,4]) , ( 3 + F[ 0,2])} 

               = Max{0, 3 + 0} 

            F[1,4]= 3 

Compute F [1 , 5]  with  i = 1 , j= 5, wi = 2 and vi =3 

  As  j≥ wi  we will obtain  F[1,5] as 

    F[1,5]= Max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max {F[ 0,5]) , ( 3 + F[ 0,3])} 

               = Max{0, 3 + 0} 

            F[1, 5]= 3 

 

The table with these values can be  

                     0       1       2        3     4       5 

                 

    

   0 

 

        1 

 

   2 

 

        

   3 

 

         

    4 

 

     

 

 

Compute  F[2 , 1]  with  i = 2 , j= 1, wi = 3 and vi =4 

As  j≤ wi  we will obtain  F[2,1] as 

  F[2,1] = F[i – 1, j] = F[1, 1] 

  F[2,1] = 0 

  

Compute F [2 , 2]  with  i = 2 , j= 2, wi = 3 and vi =4 

As  j≤ wi  we will obtain  F[2,2] as 

  F[2,2] = F[i – 1, j] 

             = F[1, 2] 

  F[2,2] = 3 

 

 Compute F [2 , 3]  with  i = 2 , j= 3, wi = 3 and vi =4 

0 0 0 0 0 0 

0 0 3 3 3 3 

0      

0      

0      
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As  j≥wi  we will obtain  F[2,3] as 

  F [2 , 3]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

                = Max { F[ 1,3]) , ( 4 + F[ 1,0])} 

               = Max{ 3, 4+ 0} 

    F[2,3] = 4 

 

 Compute F [2 , 4]  with  i = 2 , j= 4, wi = 3 and vi =4 

As  j≥wi  , we will obtain  F[2,4] as 

    F [2,4]  = max{ F[i -1,j],vi + F [i-1, j-wi]} 

                 = Max { F[ 1,4]) , ( 4 + F[ 1,1])} 

                        = Max{ 3, 4+ 0} 

      F[2,4] = 4 

 

Compute F [2 , 5]  with  i = 2 , j= 5, wi = 3 and vi =4 

As  j≥wi  , we will obtain  F[2,5] as 

  F [2 , 5]  = max{ F[i -1,j],vi + F [i-1, j-wi]} 

                 = Max { F[ 1,5]) , ( 4 + F[ 1,2])} 

                        = Max{ 3, 4+ 3} 

      F[2,5] = 7 

 The table with these values can be  

 

                      0       1       2        3   4     5 

                 

    

   0 

 

        1 

 

    

   2 

 

        

   3 

 

         

    4 

  

  

Compute F [3 , 1]  with  i = 3 , j= 1, wi = 4 and vi =5 

 As  j< wi  we will obtain  F[3,1] as 

   F[3,1] = F[i – 1, j] 

            = F[2, 1] 

   F[3,1] = 0 

 Compute F [3 , 2]  with  i = 3 , j=2, wi = 4 and vi =5 

 As  j<wi  we will obtain  F[3,2] as 

   F[3,2]= F[i – 1, j] 

             = F[2, 2] 

   F[3,2]= 3 

 Compute F [3 , 3]  with  i = 3 , j=3, wi = 4 and vi =5 

 As  j<wi  we will obtain  F[3,3] as 

   F[3,3]= F[i – 1, j] 

             = F[2, 3] 

0 0 0 0 0 0 

0 0 3 3 3 3 

0 0 
  3   4  4   7 

0      

0      
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   F[3,3] = 4 

Compute  F [3 , 4]  with  i = 3 , j=4, wi = 4 and vi =5 

 As  j<wi  we will obtain  F[3,4] as 

   F [3,4]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max { F[ 2,4]) , ( 5 + F[ 2,0])} 

             = Max{ 4, 5+ 0} 

   F[3,4] = 5 

 Compute F [3 , 5 ] with  i = 3 , j=5 wi = 4 and vi =5 

 As  j<wi  we will obtain  F[3,5] as 

   F [3,5]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

              = Max { F[ 2,5]) , ( 5 + F[ 2,1])} 

             = Max{ 7, 5+ 0} 

    F[3,5] = 7 

 The table with these values can be  

                      0         1         2             3    4       5 

                 

    

   0 

 

        1 

 

    

   2 

 

       3 

 

           4 

 

 

 

 

 Compute F [4 , 1]  with  i = 4 , j=1, wi = 5 and vi =6 

 As  j<wi  we will obtain  F[4,1] as 

   F[4,1] = F[i – 1, j] 

             = F[3, 1] 

   F[4,1]= 0 

 Compute F [4 , 2]  with  i = 4 , j=2, wi = 5 and vi =6 

 As  j<wi  we will obtain  F[4,2] as 

   F[4,2] = F[i – 1, j] 

             = F[3, 2] 

   F[4,2]= 3 

 Compute F [4 , 3]  with  i = 4 , j=3 wi = 5 and vi =6 

 As  j<wi  we will obtain  F[4,3] as 

   F[4,3] = F[i – 1, j] 

             = F[3, 3] 

   F[4,3]= 4 

 Compute F [4 , 4]  with  i = 4 , j=4 wi = 5 and vi =6 

 As  j<wi  we will obtain  F[4,4] as 

   F[4,4] = F[i – 1, j] 

             = F[3, 4] 

   F[4,4] = 5 

 Compute F [4 , 5]  with  i = 4 , j=5 wi = 5 and vi =6 

0 0 0 0 0 0 

0 0 3 3 3 3 

0 0 
  3   4  4   7 

0 0 3 4 5 7 

0      
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 As  j<wi  we will obtain  F[4,5] as 

   F[4,5]= Max{ F[i -1,j],vi + F [i-1, j-wi]} 

                         = Max { F[ 3,5]) , ( 6 + F[ 3,0])} 

                         = Max{ 7, 6+ 0} 

   F[4,5]=7 

 

 The table with these values can be 

 

  

                      0       1       2        3  4      5 

                 

    

   0 

 

        

   1 

 

    

   2 

 

       3 

 

          4 

 

Identification of Knapsack Items: 

F[ n, W] is the total value of selected items  that can be placed in the knapsack.  Following steps 

are used repeatedly. 

Let i=n and k = W then 

While ( i>0 and k>0) 

{ 

     If(F[i,k] ≠ F[i-1,k]) then 

                    Mark ith item as in knapsack 

                    i= i-1 and k=k-wi        // selection of ith item 

             else  

                    i= i-1 // do not select ith item 

} 

 

Let us apply these steps to the problem we have in final table.               

         0         1         2       3        4       5 

0 0 0 0 0 0 

0 0 3 3 3 3 

0 0 
  3   4  4   7 

0 0 3 4 5 7 

0 0 3 4 5 7 

0 0 0 0 0 0 

0 0 3 3 3 3 

0 0 
  3   4  4    7 

0 0 3 4 5 7 
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   0 

 

         

   1 

 

    

   2 

 

        

   3 

 

         4 

 

 

 

Start :  Let i = 4 and k = 5     

   Capacity ->0       1      2      3  4       5 

                

    0 

 

         1 

 

     

    2 

 

        3 

 

           4 

 

     

As  F[i,k] = F[ i – 1, k] 

     

   F[ 4,5] = F[3,5] , Don’t  select i th item. 

 Now set  i = i - 1,     i = 3 

 Capacity ->   0       1       2       3       4        5 

                 

    

   0 

         

   1 

 

   2 

 

       3 

 

        4 

  

 

 F[3,5] = F[2,5]   Don’t select ith item i.e ., 3 rd item .   now set i = i-1, i=2   

   Capacity ->  0          1          2         3       4      5 

0 0 3 4 5 7 

0 0 0 0 0 0 

0 0 3 3 3 3 

0 0 
  3   4    4    7 

0 0 3 4 5 
 

7 

0 0 3 4 5 7 

0 0 0 0 0 0 

0 0 3 3 3 3 

0 0 
  3   4  4    7 

0 0 3 4 5 7 

0 0 3 4 5 7 
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    0 

 

         1 

     

    2 

 

        3 

 

            4 

 

   

 

F [i,k]≠ F[ i – 1, k]  F[2,5] ≠ F[1,5] Select ith item,  ie , select 2nd  item.Set i = i -1 and k 

= k- wi i.e . i = i -1, i=1 and k = 5 - 3 =2 

 

 

    

  Capacity ->          0          1          2           3       4      5 

                  

    0 

          

    1 

 

    2 

         

    3 

                        

    4 

    

      

 

As  F [i,k]≠ F[ i – 1, k] 

      i.e F[1,2] ≠ F[0,2] 

      select ith item 

     That is , select 1st  item. 

     Set i = i - 1 and k = k – wi 

           i = 0 and k=2-2=0 

    Thus item 1 and item 2 are selected for the knapsack. 

Algorithm 

  Algorithm Dynamic knapsack (n,, W,w[],v[]) 

  // problem description : this algorithm is for obtaining knapsack 

  // solution using dynamic programming 

//input : n is total number of items , W is the capacity of //knapsack, w [] stores 

weights of each item and v[] stores 

  //the values of each item 

  //output : returns the total value of selected items for yhe  

  // knapsack 

  For(i← 0 to n ) do 

  { 

   for(i← 0 to W ) do 

   { 

0 0 0 0 0 0 

0 0 3 3 3 
3 

0 0 
  3   4  4    7 

0 0 3 4 5 7 

0 0 3 4 5 7 

0 0 
0 

0 0 0 

0 0 3 3 3 3 

0 0 
  3   4  4    7 

0 0 3 4 5 7 

0 0 3 4 5 7 
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    F[i,0] = 0 // table initialization 

    F[0,j] = 0 

   } 

  } 

  for(i← 0 to n ) do 

  { 

   for(i← 0 to W ) do 

    { 

     If(j<w[i]) then  

     { 

      F[i,j] ←F[i – 1, j] 

      Else if (j>= w[i]) then 

      F[i,j] ←max(F[i -1,j],v[i] + F [i-1, j-w[i]) 

     } 

    } 

  }  

  Return F[n,W] 

Analysis: 

In this algorithm the basic operation is if ….else if statement within two nested for loops 

 Hence 

   C(n) =  

   C(n) =  

   C(n) =  

   C(n) =  

   C(n) = W.  

   C(n) = W( n- 0 +) + ( n-0+1) 

   C(n) = Wn +W + n + 1 

   C(n) = Wn 

The time complexity of this algorithm is Θ( nW) 

 

7. Explain 0/1 knapsack Memory function in detail.  Or   Explain knapsack  problem and  

   memory function in detail. (APR/MAY 2018) 

 

Memory Function: 

 The memory function technique seeks to combine strengths of the top down and bottom 

up approaches to solving problems with overlapping subprograms of a given problem and 

recording their solutions in a table. 

Memorization: is a way to deal with overlapping subproblems in           dynamic programming 

.During memorization 

1. After computing the solution to a subproblem , store it in a table 

2. Make use of recursive calls. 

  The 0/1 knapsack memory function algorithm: 
ALGORITHM MFKnapsack(i, j ) 

//Implements the memory function method for the knapsack //problem 

//Input: A nonnegative integer i indicating the number of the //first  items being 

considered and a nonnegative integer j //indicating the knapsack capacity 
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//Output: The value of an optimal feasible subset of the first i //items 

//Note: Uses as global variables input arrays Weights[1..n], 

// Values[1..n], and table F[0..n, 0..W ] whose entries are //initialized with −1’s 

except for row 0 and column 0 initialized //with 0’s 

if F[i, j ]< 0 

if j <Weights[i] 

value←MFKnapsack(i − 1, j) 

else 

value←max(MFKnapsack(i − 1, j), 

Values[i]+ MFKnapsack(i − 1, j −Weights[i])) 

F[i, j ]←value 

return F[i, j ] 

Example  

Apply the dynamic programming following instance of the knapsack problems and solve.                                   

   Feb 2009 

    

The instance is  

Item Weight Value 

1 2 $12 

2 1 $10 

3 3 $20 

4 2 $15 

  Capacity W=5   

 Solution : 

  Initially , F[0,j] = 0 and F[ i,0] = 0. 

  There are 0 to n rows and 0 to W columns in the table.  

 

                                   0      1       2      3       4       5 

 

                           1 

                                 

        2     

             

                             3     

                         

        4   

          

        5     

 

 

Now we will fill up the table either row by row or column by Colum. Let us start filling the table  

row by row using 

following formula: 

 

 

 

Compute F [1 , 1]  with  i = 1 , j= 1 , wi = 2 and vi =12 

  As  j< wi  we will obtain  F[1,1] as 

    F[1,1] = F[ i – 1, j] 

              =F[ 0, 1] = 0 

Compute F [1 , 2]  with  i = 1 , j= 2 , wi = 2 and vi =12 

  As  j≥ wi  we will obtain  F[1,2] as 

0 0 0 0 0 0 

0      

0  
    

0      

0      
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    F[1,2] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

              = Max{0, 12 + 0} 

    F[1,2] = 12 

Compute F [1 , 3]  with  i = 1 , j= 3 , wi = 2 and vi =12 

  As  j≥ wi  we will obtain  F[1,3] as 

    F[1,3] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

                      = Max{ 0, 12 + 0} 

            F[1,3] = 12 

Compute F [1 , 4]  with  i = 1 , j= 4 , wi = 2 and vi =12 

  As  j≥ wi  we will obtain  F[1,4] as 

    F[1,4] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

              = Max{ 0, 12 + 0} 

          F [1, 4]  = 12 

Compute F [1 , 5]  with  i = 1 , j= 5, wi = 2 and vi =12 

  As  j≥ wi  we will obtain  F[1,5] as 

    F[1,5] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

                       = Max{ 0, 12 + 0} 

    F [1,5]= 12 

The table with these values can be  

                                   0       1        2        3         4         5 

 

                           1 

         

                           2     

             

                          3     

                        

      4     

        

      5     

 

 Compute F [2 , 1]  with  i = 2 , j= 1, wi = 1 and vi =10 

  As  j≥ wi  we will obtain  F[2,1] as 

    F[2,1] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max{ 0, 10 + 0} 

     F[2,1]= 10 

 Compute F [2 , 2]  with  i = 2 , j= 2, wi = 1 and vi =10 

  As  j≥wi   we will obtain  F[2,2] as 

    F[2,2] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

     = Max { F[ 1,2) , ( 10 + F[ 1,1])} 

                      = Max{ 12, 10 + 0} 

            F[2,2] = 12 

 Compute F [2 , 3]  with  i = 2 , j= 3, wi = 1and vi =10 

  As  j≥wi  we will obtain  F[2,3] as 

    F [2 ,3] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max { F[ 1,3) , ( 10 + F[ 1,2])} 

                 = Max{ 12, 10+ 12} 

     F[2,3] = 22 

 Compute F [2 , 4]  with  i = 2 , j= 4, wi = 1 and vi =10 

  As  j≥wi  , we will obtain  F[2,4] as 

    F [2,4]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

              = Max { F[ 1,4]) , ( 10 + F[ 1,3])} 

0 0 0 0 0 0 

0 0 12 12 12 12 

0  
    

0      

0      
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              = Max{ 12, 10+ 12} 

    F[2,4] = 22 

 Compute F [2 , 5]  with  i = 2 , j= 5, wi = 1 and vi =10 

  As  j≥wi  , we will obtain  F[2,5] as 

    F [2,5] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max { F[ 1,5]) , ( 10 + F[ 1,4])} 

              = Max{ 12, 10+ 12} 

    F[2,5] = 22 

  The table with these values can be  

                                 

      0      1        2        3          4         5 

 

                                  1 

              

          2     

             

                                       

         3     

                    

         4     

         

         5   

 

 Compute F [3 , 1]  with  i = 3 , j= 1, wi = 3 and vi =20 

  As  j≥wi  we will obtain  F[3,1] as 

    F[3,1] = F[i – 1, j] 

              = F[2, 1] 

    F[3,1] = 10 

 Compute F [3 , 2]  with  i = 3 , j=2, wi = 3 and vi =20 

  As  j<wi  we will obtain  F[3,2] as 

    F[3,2] = F[i – 1, j] 

               = F[2, 2] 

    F[3,2] = 12 

 Compute  F [3 , 3]  with  i = 3 , j=3, wi = 3 and vi =20 

  As  j≥wi  we will obtain  F[3,3] as 

    F [3 , 3]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

                   = Max { F[ 2,3) , ( 20 + F[ 2,0])} 

                  = Max{ 22, 20+ 0} 

      F[3,3] = 22 

 Compute F [3 , 4]  with  i = 3 , j=4 wi = 3 and vi =20 

  As  j≥wi  we will obtain  F[3,4] as 

    F [3 , 4]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max { F[ 2,4]) , ( 20 + F[ 2,1])} 

              = Max{ 22, 20+1 0} 

          F [3 , 4] = 30 

Compute  F [3 , 5 ] with  i = 3 , j=5, wi = 3 and vi =20 

  As  j≥wi  we will obtain  F[3,5] as 

          F [3,5] = max{ F[i -1,j],vi + F [i-1, j-wi]} 

                       = Max { F[ 2,5]) , ( 20 + F[ 2,2])} 

                      = Max{ 22, 20+ 12} 

        F [3 , 5] = 32 

   

0 0 0 0 0 0 

0 0 12 12 12 12 

0 10 12 22 22 22 

0      

0      
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The table with these computed values will be  

          

            0      1      2      3       4       5 

 

                             1 

         

                          2     

             

                                         3     

        

                                         4     

                   

         5   

 

 

 

 Compute F [4 , 1]  with  i = 4 , j=1, wi = 2 and vi =15 

  As  j<wi  we will obtain  F[4,1] as 

    F[4,1] = F[i – 1, j] 

              = F[3, 1] 

         F[4,1] =1 0 

 Compute  F [4 , 2]  with  i = 4 , j=2 wi = 2 and vi =15 

  As  j≥wi  we will obtain  F[4,2] as 

    F [4, 2]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max { F[ 3,2]) , ( 15 + F[ 3,0])} 

               = Max{ 12, 15+ 0} 

                            F[4,2]  = 15 

 

 Compute F [4 , 3]  with  i = 4 , j=3 wi = 2 and vi =15 

  As  j≥wi  we will obtain  F[4,3] as 

    F [4, 3]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max { F[ 3,3]) , ( 15 + F[ 3,1])} 

               = Max{ 22, 15+1 0} 

    F [4,3] = 25 

 Compute F [4 , 4]  with  i = 4 , j=4 wi = 2 and vi =15 

  As  j≥wi  we will obtain  F[4,3] as 

    F [4, 4]= max{ F[i -1,j],vi + F [i-1, j-wi]} 

               = Max { F[ 3,4]) , ( 15 + F[ 3,2])} 

               = Max{ 30, 15+1 2} 

              F [4 , 4]  = 30 

Compute  F [4 , 5]  with  i = 4 , j=5 wi = wi = 2 and vi =15 

  As  j<wi  we will obtain  F[4,5] as 

    F [4 , 5]  = max{ F[i -1,j],vi + F [i-1, j-wi]} 

                    = Max { F[ 3,5]) , ( 15 + F[ 3,3])} 

                                         = Max{ 32,156+ 22} 

                            F [4 , 5] = 37 

           

The table with these computed values will be  

                  0      1      2           3        4        5 

0 0 0 0 0 0 

0 0 12 12 12 12 

0 10 12 22 22 22 

0 10 12 22 30 32 

0      

0 0 0 0 0 0 



CS 6402 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 3 

  
 

     42 

 

                             1 

         

                          2     

             

                             3     

        

                                        4     

         

         5   

   

 

 

Therefore  i = 4, k = 4 

   As  F [i,k]= F[ I – 1, k] 

   i.e F[4,5] = F[3,5] 

   Select ith item i.e ., 4 th item . 

   Now set i = i-1   and k = k- wi 

  Therefore i=4-1= 3 and k = 5 – 2= 3 

   As  F [i,k]= F[ I – 1, k] 

   i.e F[3,3] = F[2,3] 

   do not Select ith item i.e ., 3 rd item . 

   Now set i = i-1   and k = k- wi 

  Therefore i =3-1 = 2 and k = 5 – 2= 3 

   As  F [i,k]≠ F[ I – 1, k] 

   i.e F[2,3] ≠ F[1,3] 

   Select ith item i.e ., 2 nd item . 

   Now set i = i-1   and k = k- wi 

  Therefore i =2-1 = 1 and k = 3 – 2= 2 

   As  F [i,k]≠ F[ I – 1, k] 

   i.e F[1,2] ≠ F[0,2] 

   Select ith item i.e ., 1 st  item . 

   Now set i = i-1   and k = k- wi 

  Therefore i =1-1 = 0 and k = 2 – 2= 0 

Thus solution to this knapsack problem is ( item 1 , item 2 , item 4 ) with total 

profit = 37 

 

 

 

 

 

8. Explain in detail  about Greedy Techniques: 

The greedy method is a straightforward method.  

This method is popular for obtaining the optimized solutions 

In greedy technique, the solution is constructed through a sequence of steps , each expanding a 

partially constructed solution obtained so far, until a complete solution to the problem is reached 

.  

 At each step the choice made should be, Feasible-It has to satisfy the problem’s 

constraints. 

Locally optimal-It has to be the best local choice among all  feasible choices available on 

that step. 

Irrevocable -Once made, it cannot be changed on subsequent steps of the algorithm. 

0 0 12 12 12 12 

0 10 12 22 22 22 

0 10 12 22 30 32 

0 10 15 25 30 37 
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General method  

 The greedy method uses the subset paradigm or ordering paradigm to obtain the solution.  

 In subset paradigm , at each stage the decision is made based on whether a particular 

input is in optimal solution or not . 

 For example  

Knapsack problem 

Applications of greedy method  

1. Knapsack problem 

2. Prim’s algorithm for minimum spanning tree 

3. Kruskal’s algorithm  for minimum spanning tree 

4. Finding shortest path 

5. Job sequence with deadlines 

6. Optimal storage on tapes 

For solving all above problems, a set of feasible solutions is obtained. From this solution, 

optimum solution is selected.  

This optimum  solution then becomes the final solution for given problem. 

 

Divide and Conquer Vs greedy method: 

 

Divide and Conquer Greedy method 

Divide and conquer is used to obtain a 

solution to given problem. 

Greedy method is used to obtain optimum 

solution 

 

In this technique, the problem is divided 

into small sub problems are solved 

independently. Finally all the solutions of 

sub problems are collected together to get 

the solution to the given problem 

In greedy method a set of feasible solution 

is generated and optimum solution is 

picked up 

In this method , duplications in sub 

solutions are neglected. The means 

duplicate solution may be obtained 

In greedy method , the optimum selection 

is without revising previously generated 

solutions 

Divide and conquer is less efficient 

because of rework on solutions  

Greedy method is comparatively efficient 

but there is no as such guarantee of getting 

optimum solution. 

Example : quick sort, binary search 
Example : knapsack problem, finding 

mining spanning tree 

 

 Greedy method Vs Dynamic programming 

Greedy Method Dynamic  Programming 

Greedy method is used for obtaining 

optimum solution 

Dynamic  Programming is also for 

obtaining  optimum solution 

Greedy method a set of feasible solutions 

and the picks up the optimum solution 

There is no special set of feasible 

solutions in this method 
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In Greedy method the optimum selection is 

without revising  previously generated 

solutions 

Dynamic  Programming considers all 

possible sequences in order to obtain the 

optimum solution  

In Greedy method there is no as such 

guarantee of getting optimum solution 

It is guaranteed that the dynamic 

programming will generate optimal 

solution using principle of optimality 

 

9. Define Spanning Tree. Discuss the design steps in prims and Kruskal’s algorithm to construct  

    minimum spanning tree. (APR/MAY 2018) 

A spanning tree of a connected graph  is its connected acyclic subgraph that contains all the 

vertices of the graph. 

A tree T is a Spanning tree if a connected graph G(V,E) such that 

o Every vertex of G belongs to an edge in T. 

o The edge in T form a tree 

Minimum Spanning Tree (MST)  

A technique of building a spanning tree with minimum cost and weight is known as minimum 

spanning tree. 

A Minimum Spanning tree of a weighted graph connected graph G is its spanning tree of the 

smallest weight, where the weight of a tree is defined as the sum of the weights on all its edges.  

The total number of edges in minimum spanning tree (MST) is |V|-1 where V is the number of 

vertices. 

Characteristics of Minimum Spanning Tree (MST) 

A minimum spanning tree connects all nodes in a given graph 

• A MST must be a connected and undirected graph 

• A MST can have weighted edges 

• Multiple MSTs can exist within a given undirected graph 

There are two types of spanning trees based on the traversal. 

If the spanning tree resulting from a cell to DFS is known as a Depth First Spanning Tree. 

When BFS is used, the resulting spanning tree is called a Breadth First Spanning tree. 

Example: 

Shows the graph and its spanning tree 
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W(T1)=6                   W(T2)=9 

 

 

 

 

 

 

 

 

 

     W(T3)=8 

     

 

Spanning tree of graph    T1 is the Minimum Spanning Tree 

Types of algorithm to find MST 

To find the MST, We have two algorithms as follows, 

 Prim’s algorithm 

 Kruskal’s algorithm 

Characteristics of Kruskal and Prim algorithm 

• Both Prim’s and Kruskal’s Algorithms work with undirected graphs 

• Both work with weighted and un-weighted graphs but are more interesting when edges 

are weighted 

• Both are greedy algorithms that produce optimal solutions  

Applications of MST 

 Network design- telephone, electrical, hydraulic, TV cable, computer, road 

 Approximation algorithms for NP-hard problems, traveling salesperson problem 

 

10. Explain Prim’s Algorithm  for constructing minimum cost      spanning  tree. Or Explain the 

working of Prim’s Algorithm. Nov/Dec 2017 

       Prim’s algorithm is a greedy algorithm for constructing a minimum    

       spanning tree of a weight connected graph. 

       It works by attaching to a previously constructed subtree a vertex    

       closest to the vertices already in the tree. 

Procedure 

 Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding 

subtrees. 

 The initial subtree contains an arbitrarily selected vertex. 

 On each iteration, the current tree is expanded in greedy manner by attaching the nearest 

vertex ti it. 

 The nearest vertex will have the smallest weight. 

 The algorithm stops, when all vertices have been included. 

 If n is the number of vertices in a graphs then the total numbers of iterations is n-1. 

 The tree generated by the algorithm is obtained as the set of edges used for the tree 

expansion. 

Pseudo code of the algorithm 

Algorithm Prim(G) 

//Prim’s algorithm for constructing a minimum spanning tree  

//Input : A weight connected graph G = {V,E} 

//Output: ET , the set of edges composing a MST of G 

a 

c d 

1 

5 
2 

b 
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VT ← {v0}// set  of tree vertices can be initialize with any vertex. 

ET ← ᶲ // empty set 

for i ← 1 to |V|- 1 do 

find the minimum weight edge, e* = (v*, u*) among all the edges(v,u) 

such that v is in VT and u is in V- VT 

VT ← VT union {u*} 

ET ← ET union {e*} 

return ET 

In prim’s algorithm, 

The information about the shortest edge of each vertex can be provided. 

The information can provided by attaching two labels to a vertex. 

Name  of the nearest vertex 

Weight of the corresponding edge. 

Vertices that does not have adjacent  to the any vertex can be given. 

The  label ∞ indicates infinite distance to the tree vertices 

The null  label is used to indicate the name of the nearest tree vertex 

 With the help of an above information it is easy to find the vertex  

         with smallest distance. 

Prim’s Example 

 

 

 

 

 

 

 

The following section explains the application of Prim’s algorithm to a specific graph.The graph 

is  
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a(_,_) 
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Hence, the prim’s algorithm finds the minimum spanning tree 

The minimum spanning tree is 
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Analysis Of The Prims Algorithm 

The algorithm spends most of the time in selecting the edge with minimum length .  

Hence the basic operation of this algorithm is to find the edge with minimum path 

length. 

This can be given by following formula 

 

T(n) =  

 

 

 

Time taken by    Time taken by     Time taken by  

For k=1 to nodes-1 loop   For i=0 to nodes-1 loop  For j=0  to  

                                                                           nodes-1 loop 

We take variable n for nodes for the sake of simplicity of solving the equation then  

 

  T(n) =  

   

T(n)=  

T(n)=   

T(n)=   

T(n)= 2n [(n-1) – 1 + 1]  

T(n) = 2n(n-1) 

T(n) = 2n2-2n 

  T(n) = n2 

T(n) = Θ(n2 ) 

But n stands for total number of nodes or vertices in the tree . hence we can also 

state  

 

 

 

 

11. Explain  Kruskal’s Algorithm  for constructing minimum cost spanning tree.(AU april/may  

    2015) EXTRA 

 Kruskal’s algorithm is another greedy algorithm for the minimum spanning tree problem.  

 It constructs a minimum spanning tree by selecting edges in increasing order of their 

weights provided that the inclusion does not create a cycle. 

 Kruskal’s algorithm provides a optimal solution. 

 Kruskal’s algorithm looks  at a minimum spanning tree as an weighted connected graph 

G = {V,E} edges for which the sum of the edge weights is the smallest. 

 The algorithm constructs a minimum spanning tree as an expanding sequence of 

subgraph, which are always acyclic but are not necessary connected on the intermediate 

stages of the algorithm. 

 The algorithm begins by sorting the graph edges in non decreasing order of their weights. 

 Then starting with the empty subgraph , it scans this sorted list adding the next edge on 

the list to the current subgraph if such an inclusion does not create a cycle and simply 

skipping the edge otherwise. 

Time complexity of prim’s algorithm is  Θ(|V 2|) 
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Example 

The application of Kruskal’s algorithm is explained for the graph is  
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Hence, the Kruskal’s algorithm finds the minimum spanning tree 

 

The minimum spanning tree is 
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Analysis of the kruskal’s algorithm 

The worst –case running time of this algorithm is O (|E| log |E|), which is dominated by 

heap operation. 

Prim’s Vs Kruskal’s algorithm 

 

12. How will you find the shortest path between two given vertices  using Dijkstra ‘s algorithm ? 

or  Explain the Dijikstra’s shortest path algorithm and its efficiency. Nov/Dec 2017 EXTRA 

 

Shortest path: the path whose total weight (i.e., sum of edge weights) is minimum  

Shortest-Path problems: 

 Single-source (single-destination). Find a shortest path from a given source (vertex s) to 

each of the vertices. The topic of this lecture. 

 Single-pair. Given two vertices, find a shortest path between them. Solution to single-

source problem solves this problem efficiently, too. 

 All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming 

algorithm.  

 Unweighted shortest-paths – BFS.     

Single-source shortest paths problem 

For a weighted graph G = (V,E,w), the single-source shortest paths problem is to find the 

shortest paths from a vertex source vertex v to all other vertices in the graph.  

Algorithms used to resolve Single-source shortest-path problem 

Common algorithms: Dijkstra's algorithm, Bellman-Ford algorithm  

• Dijkstra's algorithm solves the single-source shortest path problem. 

• Bellman–Ford algorithm solves the single-source problem if edge weights 

may be negative. 

• Floyd–Warshall algorithm solves all pairs shortest paths. 

BFS can be used to solve the shortest graph problem when the graph is weightless or all the 

weights are the same. 

 

Shortest – Path Algorithm: 

The shortest path algorithm determines the minimum cost of the path from source to every other 

vertex. 

                      N-1  

 The cost of the path V1, V2, ---Vn is Σ Ci,i+1.  

This is referred as weight path length.  

 The unweighted path length is merely the number of the edges on the path, namely N-1. 

Two type of shortest path problems, exit namely, 

 The single source shortest path problem. 

 The all pairs shortest path problem. 

 

Single source shortest path algorithm 

 The single source shortest path algorithm finds the minimum cost from single source 

vertex to all other vertices.  

 Dijkstra’s algorithm is used to solve this problem which follows the greedy technique. 

Prim’s  algorithm Kruskal’s algorithm 

This algorithm is for obtaining 

minimum spanning tree selecting the 

adjacent vertices of already selected 

vertices 

This algorithm is for obtaining minimum 

spanning tree but it is not necessary to 

choose adjacent vertices of already selected 

vertices 

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
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All pairs shortest path algorithm 

 All pairs shortest path problem finds the shortest distance from each vertex to all other 

vertices.   

 To solve this problem dynamic programming technique known as floyd’s algorithm is 

used. 

  

Dijkstra’s Algorithm: 

o Dijkstra’s algorithm solves the single source shortest path problem of finding shortest 

paths from a given vertex (the source), to all other vertices of a weight graph or digraph. 

o It works  as prim’s  algorithm  but compares path lengths rather than edge lengths. 

o Dijkstra’s algorithm always provides a correct solution for a graph with non negative 

weight. 

o Dijkstra’s algorithm is applicable to graph with non negative weight only. 

o It finds the shortest path from the source to vertex nearest ti it, then to a second nearest 

and so on. 

o Before its ith iteration the algorithm would have identified the shortest paths to i-1 other 

vertices nearest to the source.   

o These vertices, the source and the edges of the shortest paths leading to them from a 

subtree Ti of the given graph as hown in figure below 

 
 The subtree of the shortest paths is found in hold. 

 The next vertex nearest  to the source can be found among the vertices adjacency to the 

vertices Ti, since all edge weights are non negative. 

 The set of vertices adjacent to the vertices is Ti can be  referred as “ fringe vertices” from 

this vertex nearest to the source is chosen. 

 

 

Identification  of  i th nearest vertex 

 For every fringe vertex u, sum of the distance to the nearest tree vertex v and the length 

dv of the shortest path from the source to v is computed. 

 Then select the vertex with the smallest sum. 

 The comparison of the lengths of special paths is the central insight of Dijkstra’s 

algorithm. 

 

Labels  

 To perform the algorithm’s operations two labels are used. 

o The numbers label d indicates the length of the shortest path from the source to 

vertex found. 

o The other label indicates the name of the next to last vertex on shortest path.(ie) 

the parent of the vertex in the tree being constructed. 
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 Using these labels , the next nearest vertex u* is identified. 

 

Operation 

Two  operations are performed to add u* to the tree. They are 

1. Move u* from the fringe to set of tree vertices. 

2. For each remaining fringe vertex, u, that is connected to u* by an edge of weight 

w(u*,u) such that du*+ w(u*,u) < du , updates the labels of u by u* and du*+ w(u*,u) 

respectively. 

 

Example  
The application of Dijkstra’s algorithm to the  graph is explained in details. 

 The graph is  

Tree 

Vertices 
Remaining Vertices Illustration 

 

 

 

a(_,0) 

 

 

 

 

b(a,3),c(_,∞), 

d(a,7),e(_,∞) 

 

 

 

b 
c 

a f 
d 

3 2
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7 
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4

5 

6 

b 
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a f 
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3 2

4

4 

4 

7 

5
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4
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 The shortest paths and their lengths are 

  From a to b : a – b of length 3 

  From a to d : a – b - d of length 5 

  From a to c : a – b - c of length 5 

  From a to e : a – b – d - e of length 9 

Dijkstra’s algorithm compares path  lengths and therefore add edge Weights. 

Pseudocode  of the algorithm 

AlgorithmDijkstra(G.S) 

// Dijkstra’s algorithm for single source shortest paths 

// Input: A weight connected graph G = <V,E > and its vertex S. 

// Output: The length dv of a shortest path from S to V. 

 

Initialize (Q)  //initialize vertex priority queue to empty 

 for every vertex v in V do 

dv←∞ 

Pv←null 

insert (Q,V, dv )    

ds←0 

decrease(Q,V,ds)    

VT ← ᶲ 

for i ← 0 to |V| - 1 do 

u*←0Deletemin(Q) 

VT←VTU{u*} 

for every vertex u in V- VT that is adjacent to u* do 

if du*+w(u*,u)<du 

du ← du*+w(u*,u) 

pu ← u* 

decrease (Q,V, du )    

 

 

 

 

 

 

b(a,3) 

 

 

 

 

 

c(b,3+4),d(b,3+2), 

e(_,∞) 

 

 

 

 

 

 

 

d(b,5) 

 

 

 

 

c(b,7),e(d,5+4) 

 

 

 

 

 

 

 

 

e(d,9)   
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 The time efficiency of Dijkstra’s algorithm depends on the structure used for 

implementing the priority queue and for representing as input graph. 

 The efficiency is ϴ(|V|2) for graphs represented by their weight matrix and the priority 

queue implemented as an unordered array. 

 The efficiency is ϴ(|E|log|V|) for graphs represented by  the adjacency linked list and the 

priority queue implemented as a min heap. 

 Better efficiency can be achieved if priority  queue is implemented using a sophisticated 

data  structure called the Fibonacci Heap. 

 

13.  Explain in detail about Huffman Trees. Or Write the Huffmans’ algorithm. Construct. The 

Huffmans’ tree for the following data and obtain its Huffmans’ code Nov/Dec 2017  or 

(i)write the Huffman code algorithm and derive its time complexity(5+2) 

(ii)generate the Huffman code for the following data comprising of alphabet and their 

frequency.(6) 

a:1, b :1 ,c :2, d :3, e :5, f: 8,g : 13,h : 21     Apr/May 2019 

 A Huffman tree is a binary tree that minimizes the weighted path length from the root to 

the leaves containing a set of predefined weights. 

 The most important application of Huffman trees are Huffman codes. 

 A Huffman code is a optimal prefix tree variable length encoding scheme that assigns bit 

strings to characters based on their frequencies in a given text.  

 This is accomplished by a greedy construction of a binary tree whose leaves represent the 

alphabet characters and whose edges are labeled with 0’s and 1’s. 

 To encode a text that comprises n characters from some alphabet by assigning to each of 

the text’s characters some sequence of bit called the code word. 

 

Types of encoding 

1. Fixed length encoding 

2. Variable length encoding 

 Fixed length encoding 

It assigns to each character a bit string of the some length m (m>=log2n) 

 

 Variable length encoding  

It assigns code words of different lengths to different characters. 

 

Prefix free code or Prefix code 

 In a prefix code no codeword is a prefix of a codeword  of another characters. 

 To construct a tree that would assign shorter bit strings to high frequency characters 

and longer ones to low frequency characters can be done by greedy algorithm 

invented by David  Huffman. 

    

Huffman’s algorithm 

Step 1 

Initialize n one node trees and label them with the characters of the alphabet.  

Record the frequency  of each character in its tree’s root to indicate the tree’s weight. 

The weight of a tree will be equal to the sum of the frequencies in the tree’s leaves. 

 

Step 2  

Repeat the following operation until a single tree is obtained.  

Find two trees with the smaller weight.  

Make them, the left and right sub tree of a new tree and record the sum of their weights in the 

root of the new tree as its weight. 

 



CS 6402 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 3 

  
 

     57 

Example  

 

Consider the five character alphabet {A,B,C,D,-} with the following occurrence probabilities. 

Character A B C D - 

Probability 0.35 0.1 0.2 0.2 0.15 

The huffman tree construction for the input is  

 

 

Step 1  

 

 

 

 

 

 

Step2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4 
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Step 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Huffman coding tree is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence the resulting codeword for the characters are 

 

Character A B C D - 

Probability 0.35 0.1 0.2 0.2 0.15 

Codeword 11 100 00 01 101 

Bits 2 3 2 2 3 

 

0.2 

C 

0.2 

D 

0.4 

0.1
 

0.1 

B 

0.15 

- 

0.25 0.35 

A 

 B 

0.15 

- 

0.25 0.35 

A 

0.6 

1.0 

0.2 

C 

0.2 

D 

0.4 

0.1

 
B 

0.15 

- 

0.25 0.35 

A 

0.6 

1.0 
0 

1 

0 1 
0 1 

0 1 



CS 6402 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 3 

  
 

     59 

 

Hence the string DAD is encoded as 

   D A D  DAD 

   01 11 01  011101 

 

And BAD_AD is encoded as 

B A D _ A D  BAD_AD 

       100     11 01 101 11     01 10011011011101 

 

With the occurrence probabilities given and the codeword lengths obtained, the expected number of 

bits per character in this code is calculated as, 

Sum of the multiplications of probability of characters and number of bits in the code word. 

  (i.e) =0.35*2+0.1*3+0.2*2+0.2*2+0.15*3 

   = 0.7+0.3+0.4+0.4+0.45 

   =2.25 

Therefore the expected number of bit per character is 2.25 

In fixed length encoding, minimum three bits are used per characters. 

 

Compression Ratio 

Huffman’s code achieves the compression ratio, which is a standard measure of compression 

algorithms effectiveness of  

  (3-2.25)/3*100=0.75/3*100 

         = 0.25*100 

                          =25% 

So, Huffman encoding of a text will use 25%less memory than its fixed length encoding. 

Advantage of huffman’s encoding 

1) Huffman’s encoding is one of the most important file compression methods. 

2) It is simple 

3) It is versatility 

4) It provides optimal and minimum length encoding 

Simple Version 

 The simple version of Huffman compression calls for a preliminary scanning of a given 

text to count the frequencies of character occurrences in it. 

 The frequencies are used to construct a Huffman coding tree and to encode the text. 

Drawback of simplest version 

 The information about the coding tree has to be included in to the 

    encoded text to make the decoding possible. 

Dynamic Huffman encoding 

 Dynamic Huffman encoding is used to overcome the drawback of simplest version. 

 In dynamic Huffman encoding, the coding tree is updated each time a new character is 

read from the source text. 

Weighted path length  

                                    n 

The weighted path length is defined as the sum ∑ li wi 

 I=1 

Where, li is the length of the simple path from the root to the ith leaf. 

wi is the length of the frequency. 

 In coding application, 

o li is the length of the codeword. 

o wi is the length of the frequency. 

Huffman algorithm is used to construct a binary tree with a minimum weighted path length. 

Example 
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Consider the game of guessing a chosen object from n possibilities. 

When n=4, the decision tree is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The another decision tree is, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The length of simple path from=number of questions needed to get to  

                                                      the chosenthe root to a leaf in a decision tree number 

represented by the leaf. 

                                                            n 

 If number I is chosen with probability pi , the the sum is ∑ li Pi 

                                                                                       I=1 

Where, li is the length of the path from the root Pi is probability. 

The sum indicates the average number of question needed to guess the chosen number. 

Application of Huffman trees:  

 Huffman encoding is used in file compression algorithm  

 Huffman’s code is used in transmission of data in an encoded form 

 This encoding is used in game playing  method in which decision trees need to be 

formed 
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14. Using dynamic approach programming, solve the following graph using the backward 

approach. (APRIL/MAY 2011) 

What is multistage graph ? List any three applications of multistage graph.(April/May 

2021) 

Multistage Graph:- 

Concept: 

The multistage graph problem is to find a minimum cost path from S to t. 

Problem description:  

 A multistage graph G=(V,E) is a directed graph in which the vertices are portioned 

into K> 2 disjoint sets Vi, 1<i<=K. 

 if (u,v) is an edge in E, then u E Vi and VEVi+1 for some i., 1< = i< =K. 

 The sets V1 and Vk are such that (V1)= VK/=1, Let S and t respectively the vertex in 

b1 and bk. 

 The vertex S is the source, and t is the sin R.   Let C (i, j) be the cost of edge (i, j) 

 The cost of a path from S to t is the sun of the cost of edges on the path. 

 Each set vi defines a stage in the graph Because of the constraints on E. 

 Every path from S to t starts in stage 1, goes to stage 2, then to stage 3, then to stage 4, 

etc., and finally  terminates in stage K. 

 

Procedure for multistage problems: 

Multistage graph using Backward Approach:- 

 Find path from s to t, stage by stage. 

 Every s to t path is the result of a sequence of K-2 decisions. 

 The ith decision involves determining which vertex in Vi+1, 1<i< K-2, is to be on the 

path. 

 P (i,j) be a minimum cost path from vertex j in vi to vertex t. 

 cost (i,j) be the cost of the path.  

 Find cost of path using the formula. 

  Cost (i,j) = min {C(f,l) + Cost (i+1, l)} 

   l€ Vi+1 

   (j,l) €E 

 Cost (K-1,j) =if c (j,t) €E 

 Cost ( K-1, j) = α if (j,t) ) €E 
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 The shortest distance between source S and sink t using following formula. 

  

 Cost (K-2, j) for all j €Vk-2 

 Cost (K-3,j) for all j € VK-3 

 Cost ( 1,s) 

 

 

 

 

 

Example:  

Find the shortest distance between source ‘s’ and sink ‘t’. 

Using 5 stage graph 

  

 4 6 

 9  2 2 5 4 

  1 4 

 7 7 2 

 3 

 3 

 2  5 5 

 11 

 11 6 

 8 

 

1. Compute cost (k-2,j) for all j€Vk-2 

K=5,because it is 5 stage graph. 

III stage contains 6,7&8 ie., 3nodes.  

i)Cost (i,j) = Min{c(j,l) + cost (i+1, l)} 

ii)Cost (3,6) = Min{6+ Cost (4,9), 5+ cost (4,10)} 

      = Min{(6+4), 5+2)} 

      = Min {10,7} 

 Cost (3,6) =7 

iii)Cost (3,7) = Min{c(j,l) + cost (i+1, l)} 

       =Min{( 4+ cost (4,9), 3+ cost (4,10)} 
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       = Min {( 4+4, 3+2)} 

       = Min {( 8,5)} 

 Cost (3,7) =5 

iV)Cost (3,8) = Min{c(j,l) + cost (i+1, l)} 

      =Min{5+cost (4,10) 6+cost (4,11)} 

      = Min { 5+2, 6+5} 

      = Min (7,11) 

 Cost (3,8) = 7 

 

2. Compute cost (k-3,j) for all j€Vk-3 

II stage contains 2,3,4 & 5nodes. 

i) Cost (2,2) = Min (4+cost(3,6) 2+cost (3,7), 1+ Cost (3,8)) 

          = Min ( 4+7, 2+5,1+7)  

        = Min (11,7,8) 

  Cost (2,2) =7 

ii) Cost (2,3) = Min (2+ Cost (3,6) 7+ Cost (3,7) 

           = Min (2+7, 7+5)  

           = Min ( 9,12) 

  Cost (2,3) = 9 

iii) Cost (2,4) = Min ( 11+ Cost ( 3,8) 

= Min ( 11+7)    

= Min ( 18) 

Cost (2,4) = 18 

iv) Cost (2,5) = Min (11+ Cost (3,7) 8+Cost (3,8) 

  = Min (11+5, 8+7)    

= Min ( 16, 15) 

     Cost (2,5) = 15 

  3. Compute cost (1,s) 

 I stage contains 1 node  

i) Cost (1,1) = Min ( 9+ Cost (2,2) 7+ Cot (2,3),3+ Cost (2,4) 2+ Cost (2,5)) 

                 = Min (9+7, 7+9, 3+18, 2+15) 

        = Min (16,16,21,17) 

 Cost (1,1) = 16 

Conclusion:- (Forward approach) 

 A Minimum cost S to t path has a cost of 16. 
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Program:- 

 Multistage graph using forward approach. 

Void  F Graph (graphG, int K, int n, int P ( ) ) 

// The input is a K-stage graph G=(V,E) with n Vertices 

// indexed in order of stages  

//E is a set of edges and c(I,j) is the cost of (i,j) 

// P(i:K)  is a minimum cost path vertex 

{ 

Cost [n]=0.0;//cost of vertex n is zero 

for (j= n-1; j>=1; j --) 

{// compute cost (j) 

 //Let r be the vertexsuch that (j,r) is an edge of G and 

//c[j,r] + cost[r] is minimum 

Cost[j] = C[j,r]+ Cost[r]; 

D[j] = r; 

//find a minimum cost path 

P[1] = 1 

P[k] = n; 

for(j=2,j<K-1; j+1) 

P[j]=d(P[j-1]]; 

} 

} 

 

Let the minimum cost path be s=1, v2,  v3 , Vk-1, t 

for the above figure 

 v2 =d(1,1)=2 

v3 =d(2,D(1,1)) 

v3 =d(2,2)=7 

    =d(3,d(2,d(1,1))) 

    =d(3,7) 

    =10 

Multistage graph using Backward Approach:- 

 The multistage graph can be solved using the backward approach. 

 Let, bp(i,j) be a minimum cost path from vertex S  to a vertex j in Vi 

 bcost(i,j) be the cost of bp(i,j) 
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 Shortest path from source‘s’ to sink ‘t’ using backward  

 bcost(i,j) = min {bcost ( i-1, l) + c (l, j)} 

l€vi-1 

(l,j)€E 

 bcost(2,j)=c(1,j) if(1,j) €E 

 bcost(2,j)=α if(1,j) €E 

 

Find shortest path from source ‘s’ to sink ‘t’ for the following graph using backward approach. 

 

 4     6 

 4 

                 9 1 2 2 5 

 7 4 

 7 3 2 

 3 

 5 

 2 11 5 

 11 6 

 8 

 

i) Compute bcost for i=2 

 bcost(2,2)=min{c(1,2)} 

       = 9 

 bcost(2,3)=min{c(1,3)} 

           = 7 

 bcost(2,4)=min{c(1,4)} 

                = 3 

 bcost(2,5)=min{c(1,5)} 

           = 2 

 

ii) Compute bcost for i=3 

 bcost (3,6) = min { bcost(2,2) +c(2,6),bcost(2,3) +c(3,6)} 

= min {(9+2), (7+2)}  

= min {13,9} 

=9 
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 bcost (3,7) = min ( bcost (2,2) +c(2,7),bcost(2,3) +c(3,7),bcost(2,5)+c(5,7)} 

= min {(9+2),(7+2),(2+11)} 

= min {11,14,13) 

=11 

 bcost (3,8) = min ( bcost (2,2) +c(2,8),bcost(2,4) +c(4,8),bcost(2,5)+c(5,8)} 

= min {(9+1),(3+11),(2+8)} 

= min {10,14,10) 

=10 

iii) Compute bcost for i=4 

 bcost (4,9) = min { bcost(3,6) +c(6,9),bcost(3,7) +c(7,9)} 

= min {(9+6), (11+5)} 

= min {15,16} 

=15 

 bcost (4,10) = min { bcost(3,6) +c(6,10),bcost(3,7) +c(7,10), 

    bcost(3,8)+c(8,10)}} 

= min {(9+5),(11+3), (10+5)} 

= min {14,14,15} 

=14 

 

 bcost (4,11) = min { bcost(3,8) +c(8,11)} 

= min {(10+6)} 

= min {16} 

=16 

iv) Compute bcost for i=5 

 bcost (5,12) = min { bcost(4,9) +c(9,12),bcost(4,10) +c(10,12), 

              bcost(4,11)+c(11,12)} 

= min {(15+4), (14+2),(16+5)} 

= min {19,16,21} 

=16 

Conclusion:  (Backward approach) 

 A minimum cost s to t path has a cost of 16. 

 

Algorithm: (Backward approach) 

 Void Bgraph (graph G, int K, int n, int p[]) 
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 { 

 bcost [1] = 0.0; 

//cost of vertex 1 is zero  

for (j=2; j<n, j++) 

{ 

// compute bcost [j]  

//Let r be such that (r,j) is an edge of G and bcost[r]+C[r,j] is  

// minimum 

Bcost[j] = bcost[r]+C[r,j]; 

     D[j]=r; 

} 

//find a minimum  cost path 

 P[1] =1; 

 P[k]=n; 

 for(j=k-1,j>=2,j--) 

 P[j]=d[P[j+1]]; 

} 

Complexity of multistage graph for both forward and backward approach. 

Time complexity: 

Finding the minimum cost for each and every stage – θ(|V|+|E|) 

Shortest path from source s to sink t-> θ(k) 

Space complexity: 

Storage space for cost array cost[]   - n location 

Storage space for minimum cost path array p[] - n location 

Storage space for decision array d[]  - n location 

Storage space for stage ‘K’ variable   - 1 

Storage space for variable ‘n’   - 1 

Storage variable ‘j’     - 1 

 Total storage space -3n+3   =3(n+1) 

 

Application of multistage problem: 

Resource allocation problem 

 n units of resource are to be allocated to ‘r’ projects 

 The problem is to allocate the resource to r projects in such a way to maximize total net 

profit. 

 

15.Write the container loading greedy algorithm and explain. Prove that this algorithm is 

optimal. (NOV/DEC 2010) 

CONTAINER LOADING 

Concept: 
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 A large ship is to be loaded with cargo. The cargo is containerized, and all containers 

are the same size. Different containers may have different weights. 

 Let wi be the weight of the ith container, 1 ≤ i ≤ n. The cargo capacity of the ship is c. 

we wish to load the ship with the maximum number of containers. 

 Let xi be a variable whose value can be either 0 or 1.  

 If we set xi to 0, then container i is not to be loaded.  

 If xi is 1, then the container is to be loaded.  

 We wish to assign values to the xi’s that satisfy the constraints  

 

  

 

 The optimization function is  

 Every set of xi’s that satisfies the constraints is a feasible 

solution. Every feasible solution that maximizes ∑i=1 

xi is an optimal solution. 

 The ship may be loaded in stages; one container per stage. At each stage we need to 

select a container to load. For this decision we may use the greedy criterion: From the 

remaining containers, select the one with least weight. This order of selection will 

keep the total weight of the selected containers minimum and hence leave maximum 

capacity for loading more containers.  

 Using the greedy algorithm, we first select the container that has least weight, then the 

one with the next smallest weight, and so on until either all containers have been 

loaded or there isn’t enough capacity for the next one. 

 

Algorithm ContainerLoading (c, capacity, numberOfContainers, x) 

//Greedy algorithm for container loading 

//Set x[i]=1 iff container c[i], i ≥ 1 isloaded. 

{ 

  //sort into increasing order of weight 

  Sort (c, numberOfContainers); 

  n:=numberOfContainers; 

  // Initialize x 

  for i:=1 to n do 

  x[i]:= 0; 

  //select containers in order of weight 

  i:=1; 

  while (i ≤ n && c[i].weight ≤ capacity) 

  { 

   //enough capacity for container c[i].id   

  x[c[i].id]:=1; 

   capacity =capacity - c[i].weight; //remaining capacity 

   i++; 

} 

} 

 

Explanation: The greedy method loads containers in increasing order of their weight. Each 

element of the array c has two components - id, which is an identifier in the range 1 through 

number of containers (id is a container identifier) and weight, which is the weight of the 

container. 

Example: 

 Suppose that n=8, [w1,∙∙∙∙∙∙∙∙∙∙,w8] = [100,200,50,90,150,50,20,80] and c=400.  

 When the greedy algorithm is used, the containers are considered for loading in the 

∑i=1 wixi ≤ c and xi Є {0, 1}, 1 ≤ i ≤ n 

 
 

 ∑i=1 xi 
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order 7, 3, 6, 8, 4, 1, 5, 2.  

Step 1: 

 Arrange the containers in ascending order of their weights. 

 {7, 3, 6, 8, 4, 1, 5, 2} = {20, 50, 50, 80, 90, 100, 150, 200} 

 Initially, the solution set is {0, 0, 0, 0, 0, 0, 0, 0} 

Step 2: 

 In stage 1, the container 7 is selected, whose weight is 20 

 while (i ≤ n && c[i].weight ≤ capacity) 

 while (1 ≤ 8 && 20 ≤ 400) condition True 

 The container 7 is loaded. 

 X7 value is assigned to 1. 

 The solution set is {0, 0, 0, 0, 0, 0, 1, 0} 

 Capacity = capacity – c[i].weight ;  

 380= 400-20 

 i value is increased by one. 

 Step 3: 

 In stage 2, the container 3 is selected, whose weight is 50 

 while (2 ≤ 8 && 50 ≤ 380) condition True 

 The container 3 is loaded. 

 X3 value is assigned to 1. 

 The solution set is {0, 0, 1, 0, 0, 0, 1, 0} 

 380-50=330 

 i value is increased by one. 

Step 4: 

 In stage 3, the container 6 is selected, whose weight is 50 

 while (3 ≤ 8 && 50 ≤ 330) condition True 

 The container 6 is loaded. 

 X6 value is assigned to 1. 

 The solution set is {0, 0, 1, 0, 0, 1, 1, 0} 

 330-50=280 

 i value is increased by one. 

 Step 5: 
 In stage 4, the container 8 is selected, whose weight is 80 

 while (4 ≤ 8 && 80 ≤ 280) condition True 

 The container  is loaded. 

 X8 value is assigned to 1. 

 The solution set is {0, 0, 1, 0, 0, 1, 1, 1} 

 280-80=200 

 i value is increased by one. 

Step 6: 

 In stage 5, the container 4 is selected, whose weight is 90 

 while (5 ≤ 8 && 90 ≤ 200) condition True 

 The container 4 is loaded. 

 X4 value is assigned to 1. 

 The solution set is {0, 0, 1, 1, 0, 1, 1, 1} 

 200-90=110 

 i value is increased by one. 

Step 7: 

 In stage 6, the container 1 is selected, whose weight is 100 

 while (6 ≤ 8 && 100 ≤ 110) condition True 

 The container 1 is loaded. 

 X1 value is assigned to 1. 
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 The solution set is {1, 0, 1, 1, 0, 1, 1, 1} 

 110-100=10 

 i value is increased by one. 

 Containers 7, 3, 6, 8, 4 and 1 together weight 390 units are loaded. The available 

capacity is now 10 units, which is inadequate for any of the remaining containers. 

 

Conclusion: 

 In the greedy solution we have  

 [ x1, ∙∙∙∙∙∙∙∙∙∙ , x8] = [1, 0, 1, 1, 0, 1, 1, 1] and ∑i xi = 6 

Time complexity: 

 Sorting the containers is loaded in increasing order of weight. The sort takes O(n log n) 

time, where n is the number of containers.  

 

16. Explain in detail about Optimal merge pattern . 

Optimal merge pattern is a pattern that relates to the merging of two or more sorted files in a 

single sorted file. This type of merging can be done by the two-way merging method. 

If we have two sorted files containing n and m records respectively then they could be merged 

together, to obtain one sorted file in time O (n+m). 

There are many ways in which pairwise merge can be done to get a single sorted file. Different 

pairings require a different amount of computing time.The main thing is to pairwise merge the n 

sorted files so that the number of comparisons will be less. 

The formula of external merging cost is: 

n 

∑f(i)d(i) 

i=1 

 

Where, f (i) represents the number of records in each file and d (i) represents the depth 

 

Algorithm for optimal merge pattern 

 



CS 6402 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 3 

  
 

     71 

 

An optimal merge pattern corresponds to a binary merge tree with minimum weighted external 

path length. The function tree algorithm uses the greedy rule to get a two- way merge tree for n 

files. The algorithm contains an input list of n trees. There are three field child, rchild, and 

weight in each node of the tree. Initially, each tree in a list contains just one node. This external 

node has lchildand rchild field zero whereas weight is the length of one of the n files to be 

merged. For any tree in the list with root node t, t = it represents the weight that gives the length 

of the merged file. There are two functions least (list) and insert (list, t) in a function tree. Least 

(list) obtains a tree in lists whose root has the least weight and return a pointer to this tree. This 

tree is deleted from the list. Function insert (list, t) inserts the tree with root t into the list. 

The main for loop in this algorithm is executed in n-1 times. If the list is kept in increasing order 

according to the weight value in the roots, then least (list) needs only O(1) time and insert (list, 

t) can be performed in O(n) time. Hence, the total time taken is O (n2). If the list is represented 

as a min heap in which the root value is less than or equal to the values of its children, then least 

(list) and insert (list, t) can be done in O (log n) time. In this condition, the computing time for 

the tree is O (n log n). 

Example: 
Given a set of unsorted files: 5, 3, 2, 7, 9, 13 

Now, arrange these elements in ascending order: 2, 3, 5, 7, 9, 13 

After this, pick two smallest numbers and repeat this until we left with only one number. 

Now follow following steps: 
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Step 1: Insert 2, 3 

 

 

 

Step 2: 

 

 

 

 

 

 

Step 3: Insert 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4: Insert 13 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     2 
2 

    3 

    5 

    2     3 

    5 

    2     3 

   10 

     5 

    5 

    2     3 

   10 

     5 

    23 

    13 
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Step 5: Insert 7 and 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 6:  

 

 

 

 

 

 

 

 

 

 

 

 
So 

 

 

 

 

 

 

 

 

 

 

    5 

    2     3 

   10 

     5 

    23 

    13 

16 

    7    9 

    5 

    2     3 

   10 

     5 

    23 

    13 

16 

    7    9 

39 
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so, the merging cost = 5+10+16+23+39=93 

 

 

17. Explain in detail about Coin-change Problem with example. 

 

• To find the minimum number of Canadian coins to make any amount, the greedy method 

always works. 

– At each step select the largest denomination not going over the desired amount. 

• The greedy method doesn’t work if we didn’t have 5¢ coin. 

– For 31¢, the greedy solution is 25 +1+1+1+1+1+1 

– But we can do it with 10+10+10+1 

• The greedy method also wouldn’t work if we had a 21¢ coin 

– For 63¢, the greedy solution is 25+25+10+1+1+1 

– But we can do it with 21+21+21  

 

 

Coin set for examples 

• For the following examples, we will assume coins in the following denominations: 

     1¢     5¢     10¢     21¢     25¢ 

• We’ll use 63¢ as our goal  

A solution 

• We can reduce the problem recursively by choosing the first coin, and solving for the 

amount that is left 

• For 63¢: 

• One 1¢ coin plus the best solution for 62¢ 

• One 5¢ coin plus the best solution for 58¢ 

• One 10¢ coin plus the best solution for 53¢ 

• One 21¢ coin plus the best solution for 42¢ 

• One 25¢ coin plus the best solution for 38¢ 

• Choose the best solution from among the 5 given above 

• We solve 5 recursive problems.  

This is a very expensive algorithm 

A dynamic programming solution 
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• Idea: Solve first for one cent, then two cents, then three cents, etc., up to the desired 

amount 

– Save each answer in an array ! 

• For each new amount N, combine a selected pairs of previous answers which sum to N 

– For example, to find the solution for 13¢, 

• First, solve for all of 1¢, 2¢, 3¢, ..., 12¢ 

• Next, choose the best solution among: 

– Solution for 1¢   +   solution for 12¢ 

– Solution for 5¢   +   solution for 8¢  

– Solution for 10¢   +   solution for 3¢ 

• Let T(n) be the number of coins taken to dispense n¢. 

• The recurrence relation 

– T(n) = min {T(n-1), T(n-5), T(n-10), T(n-25)} + 1, n ≥ 26 

– T(c) is known for n ≤ 25 

• It is exponential if we are not careful. 

• The bottom-up approach is the best. 

• Memorization idea also can be used. 

• The dynamic programming algorithm is O(N*K) where N is the desired amount and K is 

the number of different kind of coins. 

15. Discuss the algorithm for finding a minimum cost binary search  trees. Explain with suitable 

    example.                            

16. Write down and explain the algorithm to solve all pairs shortest   path problem.Apr 2010 

17. Describe all pairs shortest path problem and write procedure to  compute length of the  

     shortest paths.Jun 2013Refer Part B – Q. No. 4 

18. Explain the 0/1 knapsack with an algorithm       Jun 2014Refer Part B – Q. No. 6 

20. Solve All pairs shortest path problem for the digraph with the     weight matrix given below.                                           

Jun 2014 

                              

 

 

 

 

 

Refer Part B – Q. No. 24 

 21. Explain an algorithm used to calculate binomial coefficient. Mar 2014Refer Part B – Q. No. 1 

22. Discuss various memory functions and its properties. Mar 2014 Part B – Q. No. 39 

23. Write and explain the algorithm to compute the all pairs source shortest path using dynamic 

 A B C D 

A 0 ∞ 3 ∞ 

B 2 0 ∞ ∞ 

C ∞ 7 0 1 

D 6 ∞ ∞ 0 
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      programming and prove that it is    optimal. Nov 2010Refer Part B – Q. No. 4 

24. For the following graph having four nodes represented by the   matrix given below determine  

      the all pairs source shortest       path. Nov 2010 

 

 

 

 

 

 

           

 

 

 

 

 

 

 Step 1  

 

 

 

 

 

 

 

 

 

                Calculate the new shortest path between the vertices B-C and  

                D-C                           

                        Shortest path B-C = BA + AC = 2 + 3 = 5      

         D-C = DA + AC = 6 + 3 = 9       

           Step 2  

                        

 

Calculate the new shortest path between the vertices C-A  

                        Shortest path C-A = BA + CB = 2 + 7 = 9      

           

 

Step 3  

0 ∞ 3 ∞ 

2 0 ∞ ∞ 

∞ 7 0 1 

6 ∞ ∞ 0 

 A B C D 

A 0 ∞ 3 ∞ 

B 2 0 ∞ ∞ 

C ∞ 7 0 1 

D 6 ∞ ∞ 0 

 A B C D 

 

A 

0 ∞ 3 ∞ 

B 2 0 5 ∞ 

C ∞ 7 0 1 

D 6 ∞ 9 0 

 

    

     

 A B C D 

A 0 ∞ 3 ∞ 

B 2 0 5 ∞ 

C 9 7 0 1 

D 6 ∞ 9 0 
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  Calculate the new shortest path between the vertices A-B,  

                   D-B,  A-D, B-D  

                        Shortest path A-B = AC + CB = 3 + 7 = 10 

         D-B = DC + CB = 9 + 7 = 16 

         A-D = AC + CD = 3 + 1 = 4 

         B-D = BC + CD = 5 + 1 = 6 

          

 

 

 Step 4  

                    

 

Calculate the new shortest path between the vertices C-A  

                       Shortest path C-A = CD + DA = 1 + 6 = 7 

      The shortest path between all pairs of algorithm is  

 

 

 

25. Write the algorithm to compute the 0/1 knapsack problem  using dynamic programming and 

explain it.Nov 2010Refer Part B – Q. No. 6 

 

26. Given the mobile numeric keypad.you can only press buttons that are up,left,right or doun to 

the first number pressed to obtain the subsequent numbers.you are not to press bottom row 

corner buttons .given a number N how many key strokes will be involved to press the given 

number.what is the length of it?which dynamic programming technique could be used to find 

solution for this ?explain each step with help of pseudocode and derive its time complexity. 

Given the mobile numeric keypad. You can only press buttons that are up, left, right or down to 

the current button. You are not allowed to press bottom row corner buttons(i.e.*and#). 

Given a number N, find out the number of possible numbers of given length.  

Examples: 

For N=1,number of possible numbers would be 10 (0, 1, 2, 3, …., 9) 

 

ForN=2,number of possible numbers would be 36 

 

Possible numbers:00,08 11,12,14 22,21,23,25 and so on. 

     

 A B C D 

A 0 10 3   4 

B 2 0 5 6 

C 9 7 0 1 

D 6 16 9 0 

 

    

     

 A B C D 

A 0 10 3   4 

B 2 0 5 6 

C 7 7 0 1 

D 6 16 9 0 
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If we start with 0, valid numbers will be 00, 08 (count: 2) 

 

If we start with 1, valid numbers will be 11, 12, 14 (count: 3) 

 

If we start with 2, valid numbers will be 22, 21, 23,25 (count: 4) 

 

If we start with 3, valid numbers will be 33, 32, 36 (count: 3) 

 

If we start with 4, valid numbers will be 44,41,45,47 (count: 4) 

 

If we start with 5, valid numbers will be 55,54,52,56,58 (count: 5) 

 

……………………………… 

……………………………… 

We need to print the count of possible numbers. 

Recursive Solution: 
 

Mobile Keypad is a rectangular grid of 4X3 (4 rows and 3 columns) 

Lets say Count(i, j, N) represents the count of N length numbers starting from position (i, j) 

If N = 1 

  Count(i, j, N) = 10   

Else 

  Count(i, j, N) = Sum of all Count(r, c, N-1) where (r, c) is new  

                   position after valid move of length 1 from current  

                   position (i, j) 

 

Dynamic Programming 

 

There are many repeated traversal on smaller paths (traversal for smaller N) to find all possible 

longer paths (traversal for bigger N). See following two diagrams for example. In this traversal, 

for N = 4 from two starting positions (buttons ‘4’ and ‘8’), we can see there are few repeated 

traversals for N = 2 (e.g. 4 -> 1, 6 -> 3, 8 -> 9, 8 -> 7 etc).  

aversals for N = 2 (e.g. 4 -> 1, 6 -> 3, 8 -> 9, 8 -> 7 etc 

 

http://d1gjlxt8vb0knt.cloudfront.net/wp-content/uploads/mobile2.png
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Since the problem has both properties: Optimal Substructure and Overlapping Subproblems, it 

can be efficiently solved using dynamic programming 

 

IMPORTANT QUESTIONS 

Part A 

1.Write thedifference between Greedy method and Dynamic programming. May 2011 – 

Q. No.  

2. Write  an  algorithm  to  find  shortest  path  between  all     pairs of   nodes.  May 

2011 

3.What is an optimal solution?          May 2010  

4.What is Knapsack problem? Dec 2011  
5.What is greedy algorithms?   Dec 2011  
6.State the general principle of greedy algorithm?   Dec 2010  
7.What is the limitation of Greedy algorithm?            May 2010  
8.State the principle of optimality.             Dec 2010  
9.Compare feasible and optimal solution       May 2008  
10.What are optimal binary search trees OBST?   May 2010  
11.What is a Feasible solution ?                           Dec 2013 / May 2014  
12.Differentiate between subset paradigm and ordering  paradigmDec 2012 

13.What is the drawback of greedy algorithm ?              May 2012  
14.Write control abstraction for the ordering paradigm.  May 2012  

15.What is minimum Spanning tree?   Dec 2010  

16.Compare Greedy technique with dynamic programming  method.Dec 2012 

17.What is 0 / 1 knapsack problem    Dec 2012  

18.What is an optimal solution?     May 2010  

19.Define optimal binary search tree.   May 2010  

20.Define feasible and optimal solution.   un 2014  

21.State the principle of optimality.Jun 2014 / Dec 2010  

22.List out the advantages of dynamic programming.    Jun 2014  

23.What is knapsack problem?    Jun 2013  

24.Write a note on Greedy approach.        Mar 2014  

25.Define dynamic programming.           Mar 2014  

26.What is memory function?                 Mar 2014  

27.State the general principle of greedy algorithm.  Dec 2010 

28.Compare divide and conquer with dynamic programming and Dynamic programming 

with greedy technique.                Dec 2010   

 

Part B 

http://d1gjlxt8vb0knt.cloudfront.net/wp-content/uploads/mobile3.png
http://www.geeksforgeeks.org/dynamic-programming-set-2-optimal-substructure-property/
http://www.geeksforgeeks.org/dynamic-programming-set-1/
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1. Discuss the algorithm for finding a minimum cost binary search trees.  Explain with suitable example.    

                          Dec 2012  

2. Write down and explain the algorithm to solve all pairs shortest  path    problem.Apr 2010 – Q. No. 4 

3. Describe all pairs shortest path problem and write procedure to  compute length of the shortest paths. 

  Jun 2013  

4. Explain the 0/1 knapsack with an algorithm.              Jun 2014  

5. Solve All pairs shortest path problem for the digraph with theweight atrix given below.                                           

Jun 2014 

 

 

 

 

 

 

 

6. Explain an algorithm used to calculate binomial coefficient.Mar 2014 – Q. No. 1 

7. Discuss various memory functions and its properties. Mar 2014  

8. Write and explain the algorithm to compute the all pairs source    shortest      path using dynamic 

      programming and prove that it is  optimal. Nov 2010  

9. For the following graph having four nodes represented by the    matrix given     below determine the 

all pairs source shortest        path. Nov 2010 

 

 

 

 Refer Part B – Q. No. 22 

10. Write the algorithm to compute the 0/1 knapsack problem    using dynamic       programming and  

    explain it.  Nov 2010  

11.Explain Warshall’s and Floyd’ algorithm   

12. .Explain Optimal Binary Search Trees with example 

13. Explain Greedy Technique– Prim’s algorithm- Kruskal's Algorithm with example 

 

 

 

 

 

 

 

 

 

 

ANNA UNIVERSITY APRIL/MAY 2015 

 

Part-A 

1. Write down the optimization techniques used for warshall’s algorithm.state the rules and assumption 

      which are implied behind that  (AU april/may 2015)Part A – Refer Q. No. 42 

 2. List out memory function used under dynamic programming.. (AU april/may 2015) Refer Q. No. 39 

 

Part-B 

 A B C D 

A 0 ∞ 3 ∞ 

B 2 0 ∞ ∞ 

C ∞ 7 0 1 

D 6 ∞ ∞ 0 

0 ∞ 3 ∞ 

2 0 ∞ ∞ 

∞ 7 0 1 

6 ∞ ∞ 0 
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1.(i)Given the mobile numeric keypad. You can only press buttons that are up,left,right or down to the    

        first number pressed to obtain the subsequent numbers. You are not top bottom row corner buttons  

        .given a number N how many key strokes will be  involved to press the given number. What is the  

         length of it? Which dynamic programming technique could be used to find solution for this   

        ?explain each step with help of pseudo code and derive its time complexity.Refer – Q. No. 24 

     

   (ii) How do you construct minimum spanning tree using kruskal algorithmRefer Part B– Q. No. 11 

 

2.(i) Let A={l/119,m/96,c/247,g/283,h/72,f/77,k/92,j/19} be the letters and its frequency of distribution  

       in a text file.compute a suitable huffman coding to compress the data effectively.(8) 

    (ii)write algorithm to construct OBST given root (r(I,j) 0<=i<=j<=n.also proof that this code  

       could be  performed in time o(n). (AU april/may 2015)  Refer Part B  – Q. No. 5 

  

ANNA UNIVERSITY NOV/DEC 2015 

 

PART-A 

 

1.State how binomial co-efficient is computes. Refer Q. No. 45 

2.What is best algorithm suited to identity the topology for a graph.mention its efficiency factors. 

 Refer Q. No. 46 

 

PART-B 

12.a.(i) The binary string below is the title of song encoded using huffman codes 

0011000101111101100111011101100000100111010010101 

           Given the letter frequencies listed in the table below,build the huffman codes and use them to     

           decode the title.in cases where there ar multiple “greedy”choices,the code are assembled by  

           combinning the first letters (or groups of letter)from left to right,in the order given in 

           table.also,code are assigned by labelling the left and right branches of the prefixcode treee with  

          ‘0’ and ‘1’,respectively. 

  Letter:  a h v w ‘’ e t l o 

  Frequencies 1 1 1 1 2 2 2 3 3 

 

(ii)Write the procedure to compute huffman code Refer Q. No. 13 

    

b   (i) Write  and analysze the prim”s algorithm(8) 

     (ii)Consider the following weighted graph 

   
 

Give the list of edges in the MST in the order that prim”s algorithm insert them.start prims algorithm 

from vertex A.(10) Refer Q. No. 9 

   

ANNA UNIVERSITY APRIL/MAY 2016 

 

PART-A 

1. Define the single source shortest path problem. Refer Q. No. 43 



CS 6402 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 3 

  
 

     82 

2. State Assignment problem. Refer Q. No. 44 

 

PART-B 

1. (a) Discuss about the algorithm and pseudocode to find the Minimum Spanning Tree   

        using Prim’s Algorithm. Find the Minimum Spanning Tree for the graph shown below. Ans  

        Discuss about the efficiency of the algorithm.(16) Refer Q. No. 9 & 10 

OR 

 (b) Find all the solution to the traveling salesman problem (cities and distance shownbelow) by  

      exhaustive search. Give the optimal solutions.(16) Refer Q. No. 45 

     [--------------------------------UNIT II Question asked in Unit III-------------------------------] 

 

ANNA UNIVERSITY NOV/DEC 2016 

 

PART-A 

1.How to calculate the efficiency of dijkstra’s Algorithm? Refer Q. No. 45 

2.What is mean by principal of optimality? Refer Q. No. 11 

 

PART-B 

1.(a) Solve the all-pair shortest-path problem for the digraph with the following weight matrix(16) 

      Refer Q. No. 22 

 
     

b   Apply kruskal’s algorithm to find a minimum spanning tree of the following graph.(16) 

       Refer Q. No. 11 

 
 

ANNA UNIVERSITY APRIL/MAY 2016 

 

PART-A 

1. State the general principle of greedy algorithm? Refer Q. No. 9 

2. What do you mean by dynamic programming? Refer Q. No. 12 

 

PART-B 

3. Solve the following instance of the 0/1, Knapsack problem given the knapsack capacity in W = 5 

using dynamic programming and explain it. Refer Q. No. 6 

 

Item Weight Value 

1 4 10 

2 3 20 

3 2 15 

4 5 25 

4. Write the Huffmans’ algorithm. Construct. The Huffmans’ tree for the following data and obtain its 

Huffmans’ code Refer Q. No. 13 
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Character A B C D E 
- 

Probability 0.5 0.35 0.5 0.1 0.4 0.2 

 

ANNA UNIVERSITY NOV/DEC  2017 

 

PART-A 

1. What does Floyd’s algorithm do ? Refer Q. No. 11 

2. Define principle of Optimality . Refer Q. No. 16 

 

PART-B 

1. Explain the working of Prim’s Algorithm.Refer Q. No. 10 

2. Explain the Dijikstra’s shortest path algorithm and the efficiency. Refer Q. No. 12 

 

 

PART-C 

1.Explain the steps in Building a Huffman Tree. Find the codes for the alphabets given below 

according to the frequency. Refer Q. No. 13 

_ (space) 4 

A 2 

E 5 

H 1 

I 2 

L 2 

M 2 

P 2 

R 1 

S 2 

X 1 

 

ANNA UNIVERSITY NOV/DEC  2018 

 

PART-A 

1 . Define mult istage graphs. Give an example.  Refer Q. No. 48 

2.  How dynamic programming is used to solve Knapsack problem  Refer Q. No.49 

 

PART-B 

11.  (a) Explain Floyds – Warshall algorithm using dynamic programming. Trace the 

algorithm for the given example.  Refer Q. No.3 & 4 (13) 
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b) Explain how greedy approach is used in Dijkstra's algorithm for finding the single–

source shortest paths for the given graph. (13) Refer Q. No.11 

 

 
 

 

 

 

       PART-C 

1.  Apply the greedy technique to find the minimum spaning tree using Prim's 

algorithm for the given graph. (15) 

 

 

 

ANNA UNIVERSITY APR/MAY  2018 

 

PART-A 

 

1. Define transit ive closure of a directed graph .  Refer Q. No.50 

2. Define the minimum spanning tree problem .  Refer Q. No.23 
 

PART-B 

1. a) Give the Pseudo code for Prim's algorithm and apply the same to find the 

minimum spanning tree of the graph shown below :  Refer Q. No.9 
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2. Explain the memory function method for the knapsack problem and give the 

algorithm. Refer Q. No.7 

PART-C 

1. Apply Warshall's algorithm to find the transitive closure of the digraph defined 

by the following adjacency matrix 

  0 1 0 0 

    0 0 1 0  

  0 0 0 1 

0 0 0 0 

i) Prove that the time efficiency of Warshall's algorithm is cubic. (7) 

ii) Explain why the time efficiency of Warshall's algorithm is inferior to that of 

the traversal-based algorithm for sparse graphs represented by their adjacency 

lists. Refer Q. No.3 & 4  
 

ANNA UNIVERSITY APRIL/MAY 2019 

 

PART-A 

1. State the principal of optimality.    Refer Q. No.11 

2. What is the constraint of for binary search tree insertion?   Refer Q. No.51 

 

 

PART-B 

1. (i) write the Floyd algorithm to find all pair shortest path and derive its time complexity(4+3) 

(ii) solve the following using floyd’s algorithm.(6)   Refer Q. No.4 
 

 
 

2. (i)write the Huffman code algorithm and derive its time complexity(5+2) 

(ii)generate the Huffman code for the following data comprising of alphabet and their 

frequency.(6) 

a:1, b :1 ,c :2, d :3, e :5, f: 8,g : 13,h : 21   Refer Q. No.13 
PART-C 

1. (i)Given a matrix of order M*N and two coordinators (p,q) and (r,s) which represents the top 

left and bottom right of a sub-matrix*N,calculate the sum of elements present in the in the sub-

matrix in O(1) time using dynamic programming. Determine the optimal sub-structure and write 

an algorithm 

(ii)Prove that any algorithm that sorts by comparison, require Ὡ (n log n) time 
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2.(i)The longest common subsequence (LCS) is the problem of finding the longest subsequence 

that is present in the given two sequences in the same order but not necessarily contiguously. 

Write an algorithm using dynamic programming that determines the LCS of two string ‘x’ and 

‘y’ and returns the string ‘z’ 

(ii)Prove that any algorithm that searches need to necessarily do Ὡ (n log n)comparisons 

 

ANNA UNIVERSITY NOVEMBER/DECEMBER 2019 

PART-A 

 

1. What is brute force method?   Refer Q. No.52 

2. Define a binary search tree. Refer Q. No.53 

 

PART-B 

1.(i) outline dynamic programming approach to solve the optimal binary search tree problem and 

      analyse its time complexity 

(ii) construct the optimal binary search tree for the following 5 keys with probabilities as 

    indicated.   Refer Q. No.5 

i 0 1 2 3 4 5 

Pi  0.15 0.10 0.05 0.10 0.20 

pj 0.05 0.10 0.05 0.05 0.05 0.10 

 

4. write a greedy algorithm to solve the 0/1 knapsack problem. Analyse its time complexity. 

Show that this algorithm is not optimal with an example.(5+2+6) Refer Q. No.6 

 

PART-C 

1.(i)The longest increasing subsequence(LIS)problem is to find the length of the longest 

subsequence of a given sequence such that all element of subsequence are sorted in increasing 

order. write an algorithm using dynamic programming that determines the lius of a string ‘X’.For 

example the length of LIS for {10,22,9,33,21,50,41,60,80}is 60 and LIS is {10,22,33,50,60,80}. 

(ii)Determine the time and space complexity of the above algorithm. 

 

ANNA UNIVERSITY NOV/DEC 2021 

 

PART-A 
 

1. What is meant by optimal substructure property of a dynamic programming problem. 

Refer  Q.No.54 

2. Write the control abstraction for greedy method. Refer  Q.No.55 

PART-B 

1.a) i) Compare and contrast dynamic programming and greedy method. Refer  Q.No.1 

(ii) Write the algorithm for optimal binary search tree and solve the following problem instance 

to construct the optimal binary search tree. Keys are a, b, c, d and the probabilities are 0.1, 0.2, 

0.4 and 0.3. Refer Q.No.5 

b) (i) Write the prim’s algorithm to find the minimum spanning tree and illustrate the algorithm for 

the following graph. Where a, b, c, d and e are nodes and each edges are weighted by numbers. 

Refer Q.No.10 
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(ii) What is multistage graph? List any three applications of multistage graph. Refer Q.No.14 

 

 

 

ANNA UNIVERSITY NOV/DEC 2021 

 

PART-A 

1 .  State the principle of optimality. 

2 .  What is the container loading problem. 

 

PART-B 

 

1. a) State the knapsack problem and outline the steps to solve the knapsack problem using 

dynamic programming with an example. 

 

b) What is a minimum spanning tree? Outline the steps in the Kruskal's algorithm to find a 

minimum spanning tree with an example 
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PART A 

1. What is an algorithm? Or Define an algorithm. (Apr\May- 2017) Or  

Define algorithm  with its properties.(April/May 2021) 

➢ An  algorithm  is  a  finite  set  of  instructions  that,  if  followed,  accomplishes a 

particular task.  

➢ In addition, all algorithms must satisfy the following criteria: 

• input 

• Output 

• Definiteness 

• Finiteness 

• Effectiveness. 

 

2.  Define Program. 

A  program  is  the  expression  of  an  algorithm  in  a  programming  language.  

 

3.  What is performance measurement? 

Performance measurement is concerned with obtaining the space and the time 

requirements of a particular algorithm. 

 

4.  Write the For LOOP general format. 

           The general form of a for Loop is 

For variable : = value 1 to value 2  

Step do 

{ 

<statement 1> 

<statement n > 

} 

5.  What is recursive algorithm? 

✓ Recursive algorithm makes more than a single call to itself is known as recursive call.  

✓ An algorithm that calls itself is Direct recursive.  

✓ Algorithm A is said to be indeed recursive if it calls another algorithm,which in turn calls 

A 

 

6.  What is space complexity? 

The space complexity of an algorithm is the amount of memory it needs to run to  

completion. 

 

7.  What is time complexity? 

The time complexity of an algorithm is the amount of time it needs to run to 

 completion. 

 

8.  Give the two major phases of performance evaluation. 

 Performance evaluation can be loosely divided into two major phases: 

➢ a prior estimates (performance analysis) 

➢ a posterior testing (performance measurement) 

9.  Define input size. 

The  input  size  of  any  instance  of  a  problem  is  defined  to  be the  number  of elements 

needed to describe that instance. 

 

10. Define best-case step count. 

The best-case step count is the minimum number of steps that can be  

executed for the given parameters. 
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11. Define worst-case step count. 

The worst-case step count is the maximum number of steps that can   be executed for 

the given parameters. 

 

12. Define average step count. 

The average step count is the average number of steps executed an instances with the 

given parameters. 

 

13. Define the asymptotic notation “Big oh” (0) 

A function t(n) is said to be in O(g(n)) (t(n) Є O(g(n))), if t(n) is bounded above by constant 

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative 

integer n0 such that  

t(n) ≤ c*g(n)                        for all n ≥ n0. 

 
 

14. Define the asymptotic notation “Omega” ( Ω ). NOV/DEC 2021 

 

A function t(n) is said to be in Ω(g(n)) (t(n) Є Ω(g(n))), if t(n) is bounded below by constant 

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative 

integer n0 such that   t(n) ≥ c*g(n)                  for all n ≥ n0. 

                     
15. Define the asymptotic notation “theta” (Θ) 

A function t(n) is said to be in Θ(g(n)) (t(n) Є Θ(g(n))), if t(n) is bounded both above and 

below by constant multiple of g(n) for all values of n, and if there exist a positive constant c1 

and c2  and non negative integer n0 such that C2*g(n) ≤ t(n) ≤ c1*g(n)            for all n ≥ n0. 
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16. What is a Computer Algorithm? 

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for 

obtaining a required output for any legitimate input in a finite amount of time. 

 

17. What are the features of an algorithm? 

More precisely, an algorithm is a method or process to solve a problem satisfying the 

following properties: 

Finiteness-Terminates after a finite number of steps 

Definiteness-Each step must be rigorously and unambiguously specified. 

Input-Valid inputs must be clearly specified. 

Output-Can be proved to produce the correct output given a valid input. 

Effectiveness-Steps must be sufficiently simple and basic. 

 

18. Show the notion of an algorithm.           Dec 2009 / May 2013 

An algorithm is a sequence of unambiguous instructions for solving a problem in a finite 

amount of  time. 

            
 

19. What are different problem types?  

o Sorting  

o Searching 

o String Processing 

o Graph problems 

o Combinatorial Problems 

o Geometric problems 

o Numerical problems 

 

20. What are different algorithm design techniques/strategies? 

o Brute force 

o Divide and conquer 

o Decrease and conquer 

o Transform and conquer 
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o Space and time tradeoffs 

o Greedy approach 

o Dynamic programming 

o Backtracking 

o Branch and bound 

 

21. How to measure an  algorithm’s running time? Nov/Dec 2017 

Unit for measuring the running time is the algorithms basic operation. The running time is 

measured by the count of no. of times the basic operations is executed. 

Basic operation: the operation that contributes the most to the total running time. 

Example: the basic operation is usually the most time-consuming operation in the 

algorithm’s innermost loop. 

 

22. How time efficiency is analyzed? 

Let  cop – execution time of algorithms basic operation on a particular computer. 

       c(n) – no. of times this operation need to be executed. 

       T(n) – running time. 

Running time is calculated using the formula 

    T(n) ≈ cop c(n) 

 

23. What are orders of growth? 

Orders of Growth 

 
 

24. What are basic efficiency classes? 

Basic Efficiency classes 

 

 

 

 

 

 

 

 

 

 

 

 

25. Give an example for basic operations. 

Input size and basic operation examples 

Problem Input size measure Basic operation 

Searching for key in a list 

of n items 

Number of list’s items, 

i.e. n 

Key comparison
 

 

Multiplication of two 

matrices 

Matrix dimensions or total 

number of elements 

Multiplication of two 

numbers 

1 Constant 

log n Logarithmic 

n Linear 

n log n Linearithmic 

n2 

 
Quadratic 

n3 Cubic 

2n Exponential 

n! Factorial 
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Checking primality of a 

given integer n 

size = number of digits 

(in binary representation) 
Division

 

Typical graph problem 
Number of vertices and/or 

edges 

Visiting a vertex or 

traversing an edge 

 

26. What are six steps processes in algorithmic problem solving? Dec 2009 

1. Understanding the problem. 

2. Ascertaining the capabilities of a computational device. 

3. Choosing between exact and approximate problem solving. 

4. Deciding on appropriate data structures. 

5. Algorithm Design Techniques. 

6. Methods of specifying an algorithm 

7. Proving an algorithm's correctness. 

8. Analysing an algorithm. 

9. Coding an algorithm. 

 

27. What do you mean by Amortized Analysis?   

✓ Amortized analysis finds the average running time per operation over a worst case 

sequence of operations.  

✓ Amortized analysis differs from average-case performance in that probability is not 

involved; amortized analysis guarantees the time per operation over worst-case 

performance.    

 

28. Define order of an algorithm. 

Measuring the performance of an algorithm in relation with the input size n is known as order 

of growth. 

 

29. How is the efficiency of the algorithm defined? Or . How do you measure the efficiency of 

an algorithm?   May/June 2019 

The efficiency of an algorithm is defined with the components. 

(i) Time efficiency -indicates how fast the algorithm runs   

(ii) Space efficiency -indicates how much extra memory the algorithm 

         needs  

 

30. What are the characteristics of an algorithm?   

Every algorithm should have the following five characteristics   

(i) Input 

(ii) Output 

(iii) Definiteness 

(iv) Effectiveness 

(v) Termination    

 

31. What are the different criteria used to improve the effectiveness of  algorithm?   

(i) The effectiveness of algorithm is improved, when the design, satisfies  the  

     following constraints to be minimum.   

 Time efficiency - how fast an algorithm in question runs.   

          Space efficiency – an extra space the algorithm requires. 

(ii) The algorithm has to provide result for all valid inputs.      

32. Analyse the time complexity of the following segment:   

 for(i=0;i<N;i++)   

 for(j=N/2;j>0;j--)   

 sum++; 

 Time Complexity= N * N/2 = N2 /2  Є O(N2)   
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33. Write general plan for analysing non-recursive algorithms.   

i. Decide on parameter indicating an input’s size.  

ii. Identify the algorithm’s basic operation  

iii. Check the no. of times basic operation executed depends on size of input. if it   depends 

on some additional property, then best, worst, average cases need  to be investigated   

iv. Set up sum expressing the no. of times the basic operation is executed. (establishing order 

of growth)   

34. How will you measure input size of algorithms?   

The time taken by an algorithm grows with the size of the input. So the running time of the 

program depends on the size of its input. The input size is measured as the number of items 

in the input that is a parameter n is indicating the algorithm’s input size.    

35. Write general plan for analysing recursive algorithms.    

i. Decide on parameter indicating an input’s size.  

ii. Identify the algorithm’s basic operation  

iii. Checking the no. of times basic operation executed depends on size of  

    input. if it depends on some additional property, then best, worst,   average    

    cases need to be investigated   

iv. Set up the recurrence relation, with an appropriate initial condition, for  the  

    number of times the basic operation is executed  

v. Solve recurrence  (establishing order of growth)    

36. What do you mean by Combinatorial Problem?   

Combinatorial Problems are problems that ask to find a combinatorial object-such as 

permutation, a combination, or a subset-that satisfies certain constraints and has some 

desired properties. 

37. Define Little “oh”.  

 The function f(n) = 0(g(n)) if and only if 

    Lim     f(n) / g(n)  = 0  

   n →∞    

38. Define Little Omega.  

 The function f(n) = ω (g(n)) )) if and only if 

    Lim     f(n) / g(n)  = 0  

   n →∞    

39. Write algorithm using iterative function to fine sum of n numbers.  

 Algorithm  

  sum(a, n) 

  {  

       S := 0.0  

       For i=1 to n  

                               do  

                                    S : - S + a[i];  

                                    Return S;  

                       }   

40. Write an algorithm using Recursive function to fine sum of n numbers.   

 Algorithm  

  Rsum (a, n) 

  {  

   If(n≤0) then  

    Return 0.0; 

   Else  

    Return Rsum(a, n- 1) + a(n);  

  } 

41. Describe the recurrence relation for merge sort?  
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If the time for the merging operation is proportional to n, then the computing time of merge 

sort is described by the recurrence relation 

 
 

42. What is time and space complexity?       Dec 2012   Part A – Refer Q. No. 6 & 7 

 

43. Define Algorithm validation.              Dec 2012 

The process of measuring the effectiveness of an algorithm before it is coded to know 

whether the algorithm is correct for every possible input. This process is called validation. 

 

44. Differentiate time complexity from space complexity.    May 2010 

Part A – Refer Q. No. 6 & 7 

 

45. What is a recurrence equation?                    May 2010 

A recurrence [relation] is an equation or inequality that describes a function in terms of its 

values on smaller inputs. 

Examples:  

  Factorial: multiply n by (n –1)! 

       T(n) = T(n – 1) + O(1)     -> O(n) 

  Fibonacci: add fibonacci(n – 1) and fibonacci(n – 2) 

       T(n) = T(n – 1) + T(n – 2)  -> O(2n) 

 

46. What do you mean by algorithm?    May 2013  Part A – Refer Q. No. 1, 16 & 18 

47. Define Big Oh Notation.                      May 2013   Part A – Refer Q. No. 13 

 

48. What is average case analysis?    May 2014 

The average case analysis of an algorithm is analysing the algorithm for the average input of 

size n, for which the algorithm runs at an average between the longest and the fastest time.

    

49. Define program proving and program verification.   May 2014 

✓ Given a program and a formal specification, use formal proof techniques (e.g. 

induction)  to prove that the program behaviour fits the specification. 

✓ Testing to determine whether a program works as specified. 

 

50. Define asymptotic notation.     May 2014 

Asymptotic notations are mathematical tools to represent time complexity  of algorithms for 

measuring their efficiency. 

 Types : 

▪ Big Oh notation - 'O'  

▪ Omega notation - 'Ω' 

▪ Theta notation - ’Θ’ 

▪ Little Oh notation - 'o ' 

▪ Little Omega notation - 'Ω' 

 

51. What do you mean by recursive algorithm?           May 2014  Part A – Refer Q. No. 5 

52. Establish the relation between O and Ω     Dec 2010 

  f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n)) 

 Proof: 

  O(f(n))={g:N→N  |  ∃c,n0∈N  ∀n≥n0:g(n)≤c⋅f(n)} 

  Ω(g(n))={f:N→N  |  ∃c,n0∈N  ∀n≥n0:f(n)≥c⋅g(n)} 

  Step 1/2: f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n)) 
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  ∃c,n0∈N ∀n≥n0: f(n)≥c⋅g(n)⇒f(n)g(n)≥c⇒1g(n)≥cf(n)⇒g(n)≤1c⋅f(n) 

   And this is exactly the definition of O(f(n)). 

  Step 2/2: f(n)∈Ω(g(n))⇐g(n)∈O(f(n)) 

  ∃c,n0∈N ∀n≥n0: g(n)≤c⋅f(n)⇒...⇒f(n)≥1c⋅g(n) 

  Hence proved. 

 

53. If f(n) = amnm + ... + a1n + a0. Prove that f(n)=O(nm).     Dec 2010 Refer Class note. 

 

54. What is best case analysis? Or Best case efficiency. 

The best case analysis of an algorithm is  analysing the algorithm for the best case input of 

size n, for which the algorithm runs the fastest among all the possible inputs of that size.  

 

55. what do you mean worst case efficiency of algorithm.Nov/Dec 2017 

The worst case analysis of an algorithm is analysing the algorithm for the worst case input of 

size n, for which the algorithm runs the longest among all the possible inputs of that size. 

  

56.Consider an algorithm that finds the number of binary digits in the binary  

     representation ofa positive decimal integer. (AU april/may 2015) 

Number of major comparisons=⌊log2n⌋+ 1∈log2n. 

Algorithm 3: Finding the number of binary digits in the binary representation of a positive 

decimal integer. 

Algorithm Binary(n) 

count:=1; 

whilen >1 

do 

count:=count+ 1; 

n:=⌊n/2⌋; 
end 

return count; 

57.write doun the properties of asymptotic notations.(AU april/may 2015) 

The following property is useful in analyzing algorithms that comprise two consecutively 

executed parts. 

Theorem 

 If t1(n)    O(g1(n)) and t2(n) Є O(g2(n)) then, 

  t1(n) + t2(n)  Є (max {g1(n),g2(n)}) 

Proof 

 Since   t1(n) Є O(g1(n)), there exist some constant C1 and some non  

negative integer n1 such that  

  t1(n) ≤ C1 (g1(n)) for all n ≥ n1 

Since 

  t2(n)      O(g2(n)) 

  t2(n) ≤ C2 (g2(n)) for all n ≥ n2 

Let us denote, 

  C3=max {C1, C2} and  

Consider n ≥ max {n1, n2}, so that both the inequalities can be used. 

The addition of two inequalities becomes, 

  t1(n)+ t2(n)  ≤ C1 (g1(n))+ C2 (g2(n)) 

           ≤ C3 (g1(n))+ C3 (g2(n)) 

                     ≤ C3 2 max{g1(n), (g2(n))} 

Hence, 

t1(n) +t2(n) Є  O (max {g1(n),g2(n)}),  

with the constants C and n0 required by the definition being 2C3 = 2 max (C1, C2) and 

max {n1, n2} respectively. 
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The property implies that the algorithms overall efficiency will be determined by the 

part with a larger order of growth. 

(i.e.) its least efficient part is 

t1(n) Є O(g1(n))   t1(n) +t2(n) Є O (max {g1(n),g2(n)}) 

t2(n) Є O(g2(n)) 

 

58. Give the Euclid’s algorithm for computing gcd(m, n) (AU nov 2016) or  write an algorithm to 

compute the greatest common divisor of two numbers (Apr/ May-2017)(or)  

Give the Euclid’s algorithm for computing gcd of two numbers. (May/June 2018) 

 

ALGORITHM Euclid_gcd(m, n) 

//Computes gcd(m, n) by Euclid’s algorithm 

//Input: Two nonnegative, not-both-zero integers m and n 

//Output: Greatest common divisor of m and n 

while n ≠ 0 do 

r ←m mod n 

m←n 

n←r 

return m 

 

Example: gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12. 

59.Compare the order of growth n(n-1)/2 and n
2
. (AU nov 2016) 

n(n-1)/2 is lesser than the half of n
2
 

 

60.The (log n)th smallest number of n unsorted numbers can be determined in O(n) average- 

     case time    

      Ans: True   

61.Fibonacci algorithm and its recurrence relation 

Algorithm for computing Fibonacci numbers 

First method 

 Algorithm F(n) 

 //Computes the nth Fibonacci number recursively by using its definition. 

 //Input: A nonnegative integer n 

 //Output: The nth Fibonacci number 

 if n<1 

  return n 

 Else 

  return F(n-1)+(n-2) 

n n(n-1)/2 n
2 

Polynomial Quadratic Quadratic 

1 0 1 

2 1 4 

4 6 16 

8 28 64 

10 45 10
2 

2 
10 4950 10

4 

Complexity Low High 

Growth Low high 
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the algorithm’s basic operation is addition. 

Let A(n) is the number of additions performed by the algorithm to compute F(n). 

The number of additions needed to compute F(n-1) is A(n-1) and the number of additions 

needed to compute F(n-2) is A(n-2). 

 

62. Design an algorithm to compute the area and circumference of a circle 

 
 

63. What is a basic operation? 

A basic operation could be: An assignment. A comparison between two variables. An 

arithmetic operation between two variables. The worst-case input is that input assignment for 

which the most basic operations are performed. 

Basic Operations on Sets. The set is the basic structure underlying all of mathematics. In algorithm 

design, sets are used as the basis of many important abstract data types, and many techniques have 

been developed for implementing set-based abstract data types. 

 

64. Define algorithm. List the desirable properties of an algorithm. 

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a 

certain order to get the desired output. Algorithms are generally created independent of underlying 

languages, i.e. an algorithm can be implemented in more than one programming language. 

An algorithm must satisfy the following properties: Input: The algorithm must have input 

valuesfrom a specified set. ... The output values are the solution to a problem. Finiteness: For any 

input, the algorithm must terminate after a finite number of steps. Definiteness: All steps of 

the algorithm must be precisely defined. 

65. Define best, worst, average case time complexity.  
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• The worst-case complexity of the algorithm is the function defined by the maximum number of steps 

taken on any instance of size n. It represents the curve passing through the highest point of each 

column.   

• The best-case complexity of the algorithm is the function defined by the minimum number of steps 

taken on any instance of size n. It represents the curve passing through the lowest point of each 

column.   

• Finally, the average-case complexity of the algorithm is the function defined by the average number 

of steps taken on any instance of size n.  

66.Prove that the of f(n)=o(g(n)) and g(n)=o(f(n)),then f(n)=θ g(n).  OR  

state the transpose symmetry property of O and Ω                                   April/May 2019,Nov/Dec 
2019 

Given function:  

f(n) and g(n) 

f(n)= O(g(n)) when f(n) ≤C1g(n)  for all n≥n0---------(1) 

f(n)= Ω(g(n)) when f(n) ≥C2g(n)  for all n≥n0---------(2) 

from (1) and (2) 

C2 g(n) ≤f(n) ≤ C1g(n)  for all  n≥n0 -------(3) 

(i.e) Θ(g(n)) = O(g(n))Ω(g(n)) 

From (3) f(n) = Θ(g(n)) hence proved 

67. Define recursion 

A function may be recursively defined in terms of itself. A familiar example is the Fibonacci 

number sequence: F(n) = F(n − 1) + F(n − 2). 

For such a definition to be useful, it must be reducible to non-recursively defined values: in 

this case F(0) = 0 and F(1) = 1. ccurs when a thing is defined in terms of itself or of its type. 

Recursion is used in a variety of disciplines ranging from linguistics to logic.  

The most common application of recursion is in mathematics and computer science, where 

a function being defined is applied within its own definition.  

While this apparently defines an infinite number of instances (function values), it is often 

done in such a way that no loop or infinite chain of references can occur. 

 

68. List the reasons for choosing an approximate algorithm. 

Approximation algorithms are typically used when finding an optimal solution is 
intractable, but can also be used in some situations where a near-optimal solution can be 

found quickly and an exact solution is not needed. Many problems that are NP-hard are also 
non-approximable assuming P≠NP.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Function_(mathematics)
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PART – B 

1. Explain the notion of an algorithm with diagram.      May2014 

    Synopsis: 

➢ Introduction 

➢ Definition 

➢ Diagram 

➢ Characteristics of an Algorithm / Features of an Algorithm 

➢ Rules for writing an Algorithm 

➢ Implementation of an Algorithm 

➢ Order of an Algorithm 

➢ Program 

➢ Example : GCD 

Introduction: 

▪ An algorithm is a sequence of finite number of steps involved to solve a particular 

problem. 

▪  An input to an algorithm specifies an instance of the problem the algorithm solves. 

▪  An algorithm can be specified in a natural language or in a pseudo code. 

▪  Algorithm can be implemented as computer programs. 

▪  The same algorithm can be represented in several different ways.  

▪  Several algorithms for solving the same problem may exist. 

▪  Algorithms for the same problem can be based on different ideas and can solve the 

problem with dramatically different speeds. 

 Definition: 

▪ An algorithm is a sequence of non ambiguous instructions for solving a  problem in a 

finite amount of time. 

▪ Each algorithm is a module, designed to handle specific problem.  

▪ The non ambiguity requirement for each step of' an algorithm cannot be  

compromised. 

▪ The range of inputs for which an algorithm works has to be specified  carefully. 

Diagram: 

 
 Characteristics of an algorithm / Features of an Algorithm 

The important and prime characteristics of an algorithm are, 

✓ Input:Zero or more quantities are externally supplied. 

✓ Output:At least one quantity is produced. 

✓ Definiteness:Each instruction is clear and unambiguous. 

✓ Finiteness:For all cases the algorithm terminates after a finite number of steps. 

✓ Efficiency:Every instruction must be very basic. 

✓ An algorithm must be expressed in a fashion that is completely free of  

ambiguity. 

✓ It should be efficient. 

✓ Algorithms should be concise and compact to facilitate verification of their 

correctness. 

Writing an algorithm 

• Algorithm is basically a sequence of instructions written in simple English language. 
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• The algorithm is broadly divided into two sections 

 

 

 

 

 

 

 

 

 

 

   

 Rules for writing an algorithm. 

Algorithm is a product consisting of heading and body. The heading consists of keyword 

algorithm and name of the algorithm and parameter list. The syntax  is 

Algorithm name ( p1, p2,.......pn ) 

1. Then in the heading section we should write following things : 

// Problem Description; 

// Input: 

//Output: 

2. Then body of an algorithm is written, in which various programming constructs like if 

, for , while or some assignment statement may be written. 

3. The compound statements should be enclosed within  { and } brackets. 

4. Single line comments are written  using // as beginning of comment. 

5. The identifier should begin by latter and not by digit. An identifier can be a 

combination  of alphanumeric string. 

• It is not necessary to write data types explicitly for identifiers. It will be 

represented by the context itself.  

• Basic data types used are integer, float, and char, Boolean and so on. 

• The pointer type is also used to point memory locations.  

• The compound data type such as structure or record can also be used. 

6. Using assignment operator ← an assignment statement can be given. 

For instance: Variable ← expression 

7. There are other types of operators’ such as Boolean operators such as true or false. 

Logical operators such as AND, OR, NOT. And relational operators such as < , <= , 

>, >=, = , !=. 

8. The array indices are stored with in square brackets ‘[‘ ‘]’. The index of array usually 

starts at zero. The multidimensional arrays can also be used in algorithm. 

9. The inputting and outputting can be done using read and write. 

For example: 

Write (“this message will be displayed on console “); 

Read (Val); 

10.  The conditional statements such as if –then – else are written in following  form  

If (condition) then statement 

If (condition) then statement else statement 

If the if – then statement is of compound type then {and} should be used for 

enclosing block 

11. While statement can be written as : 

While (condition)do 

{ 

 Statement 1 

 Statement 2 

      : 

Algorithm heading  

It consists of name of algorithm, problem  description , input 

and output. 

Algorithm Body 

It consists of logical body of the algorithm by making use of 

various programming constructs and assignment statement. 
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 Statement n 

} 

While the condition is true the block enclosed with {  } gets executed otherwise 

statement after} will be executed. 

12. The general form for writing for loop is : 

For variable ← value1 to valuen  do 

{ 

 Statement 1 

 Statement 2 

      : 

 Statement n 

} 

Here value1 is initialization condition and  valuen  is a terminating condition the step 

indicates the increments or  decrements in  value1  for executing the for loop. 

Sometime a keyword step is used to denote increment or decrement the value of 

variable for example 

 For i ← 1 to n step 1  

{ 

 Write (i) 

} 

 

13. The repeat – until statement can be written as  

Repeat  

 Statement 1 

 Statement 2 

      : 

 Statement n 

Until (condition) 

14. The break statement is used to exit from inner loop. The return statement is used to 

return control from one point to another. Generally used while exiting from function  

Note:  The statements in an algorithm executes in sequential order i.e. in the same 

order as they appear – one after the other 

 

Example 1 : Write an algorithm to count the sum of n numbers 

 

Algorithm   sum (1, n) 

//Problem description : this algorithm is for finding the 

//sum of given n numbers 

//Input: 1 to n numbers 

//Output: the sum of n numbers 

      Result ← 0 

       For i 1 to n do  

   i  ← i+1 

      Result ← result + i 

 Return result 

 

Example 2: Write an algorithm to check whether given number is even or odd. 

 

Algorithm eventest ( val) 

//Problem description : this algorithm test whether given 

//number is even or odd 

//Input: the number to be tested i.e .val 

//Output: appropriate messages indicating even or odd 

Here variable i is incremented  

by 1 at each iteration 
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If (val % 2 = 0) then  

    Write (“given number is even “) 

Else 

    Write (“given number is odd”) 

 

Example 3: Write an algorithm for sorting the elements. 

 

Algorithm sort (a, n) 

//Problem description: sorting the elements in ascending   

//order 

//Input: an array in which the elements in ascending order 

//is total number of elements in the array 

//Output: the sorted array 

For i 1 to n do 

For j i + 1 to  n-1 do 

If (a[i]>a[j]) then 

{ 

      temp ← a[i] 

      a[i] ←a[j] 

      a[j] ←temp 

} 

Write ( “ list is sorted “) 

 

Example 4: Write an algorithm to find factorial of n number. 

 

Algorithm fact (n) 

//Problem description: this algorithm finds the factorial. 

//for given number n 

//Input : the number n of which the factorial is to be  

//calculated. 

//Output : factorial value of given n number. 

If( n ← 1) then 

    Return 1 

Else 

    Return n * fact(n-1) 

Example 5:  

Write an algorithm to perform multiplication of two matrices 

 

Algorithm mul (A, b, n) 

//Problem description: this algorithm is for computing 

//multiplication of two matrices 

//Input : the two matrices A, B and order of them as n 

//Output : The multiplication result will be in matrix c 

For i ← 1 to n do 

        For j ← 1 to n do 

C [i,j] ← 0 

 

For k ← 1 to n do 

     C[I ,j ] ←c[i, j] +A[i,k]B[k,j] 

 

Implementation of algorithms 

An algorithm describes what the program is going to perform. It states some of the actions to be 

executed and the order in which these actions are to be executed. 
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The various steps in developing algorithm are, 

1.  Finding a method for solving a problem. Every step of an algorithm should be in a 

precise and in a clear manner. Pseudo code is also used to describe the algorithm. 

2. The next step is to validate the algorithm. This step includes, all the algorithm should 

be done manually by giving the required input, performs the required steps including 

in the algorithm and should get the required amount of output in an finite amount of 

time. 

3. Finally, implement the algorithm in terms of programming language. 

 

Order of an algorithm 

The order of an algorithm is a standard notation of an algorithm that has been 

developed to represent function that bound the computing time for algorithms. It is an 

order notation. It is usually referred as O-notation. 

 

Example 

Problem size = 'n' 

Algorithm = 'a' for problem size n 

The document mechanism execution = Cn2 times 

 where C – constant 

 Then the order of the algorithm 'a' = O(n2) 

 where n2 = Complexity of the algorithm 'a'. 

Program 

• A set of explicit and unambiguous instructions expressed using a programming 

languages constructs is called a program. 

• An algorithm can be converted into a program, using any programming language. 

Pascal, Fortran, COBOL, C and C++ are some of the programminglanguages. 

 

 

Difference between program and algorithm: 

 

1.A. write an algorithm using recursion that determines the GCD of two numbers.Determine 

the time and space complexity Nov/Dec 2019 

Example : Calculating Greatest common Divisor 

The Greatest common Divisor (GCD) of two non zero numbers a and b is basically 

the largest integer that divides both a and b evenly i.e with a remainder of zero. 

GCD using three methods 

1. Euclid's algorithm 

2. Consecutive integer checking algorithm 

3. Finding Gusing repetitive factors 

 

Euclid's algorithm to compute Greatest Common Divisor (GCD) of two non negative 

integers. 

Euclid's algorithm is based on applying related equality  

     gcd (m, n) = gcd (n, m mod n) until the m and n is equal to 0 

 Where m mod n is the remainder of the division of m by n 

Step 1: Start 

Step 2: If n = 0, return the value of m as the answer and stop,  

           otherwise proceed to step 3. 

Sno Algorithm Program 

1 Algorithm is finite. Program need to be finite. 

2 Algorithm is written using natural 

language or algorithmic language. 

Programs are written using a specific 

programming language. 
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Step 3: Divide m by n and assign the value of the remainder to r. 

Step 4: Assign the value of n to m and the value of r to n. Goto step  2 

Step 5: Stop 

 
Example, gcd (60,24) can be computed as follows, 

gcd (60,24)   gcd (m, n) 

m =60, n=24; 

m/n = 2 (remainder 12) 

n=m=24 

r=n=12 

gcd (24, 12)   m/2 = 2 (remainder 0) 

n=m=12 

r=n=0 

gcd (12, 0) =12 

Hence, gcd(60, 24) = gcd(24,l2)=gcd(12,0)=12 

 

2.  Consecutive integer checking algorithm  

In this method while finding the GCD of  a and b we first of all find the minimum value of 

them. Suppose if , value of  b is minimum then we start checking the divisibility by each 

integer which is lesser than or equal to b. 

Example: 

   a = 15 and b =10 then 

t= min( 15,10) 

since 10 is minimum we will set value of t = 10 initially.  

Consecutive integer checking algorithm for computing gcd(m, n) 

Step 1: Start 

Step 2: Assign the value of mini {m, n} to t 

Step 3: Divide m by t. If the remainder of this division is 0, go to step 4,  

           Otherwise goto step 5. 

Step 4: Divide n by t. If the remainder of this division is 0, return the value  

           of t as the answer and stop. Otherwise proceed to step 5. 

Step 5: Decrease the value of t by I. Go to step 3. 

Step 6: Stop 

Algorithm GCD intcheck (a,b) 

//Problem description : this algorithm computes the GCD of //two 

numbers a and b using consecutive integer checking   

//method 

//Input : two integers a  and b  

//Output: GCD value of a and b 

 t ← min ( a, b) 

while (t>=1) do 

{ 

If ( a mod t == 0 AND b mod t == 0) then 

Return t 
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Else 

   t ← t-1 

} 

Return 1 

 

 

 

 

 

 

 

3. Finding GCD using repetitive factors 

The third procedure for finding the greatest common divisor is middle school procedure. 

 

Middle School Method 

For the numbers 60 and 24 

 

 

 

 

 

 

 

 

 

 

                               60=2x2x3  x5                  

                               24=2x2x3  x2 

                gcd (60,24) =2x2x3      =12 

 

Algorithm: 

Step 1: Start 

Step 2: Find the prime Factor of m. 

Step 3: Find the prime factors of n. 

Step 4: Identify all the common factors in the two prime  expressions Found in 

           step 2 and step 3. If' P is a common  factor occurring pm and pn times in    

           m and n respectively. It should be  repeated min (pm, and pn) times. 

Step 5: Compute the product of the all the common factors and  return it as the  

    greatest common divisor of the numbers given. 

Step 6: Stop. 

 

2. Explain the Fundamentals of Algorithmic problem solving. Or explain the steps involved in 

problem solving    May 2014 ,April/May 2019 

Sequential steps in designing and analysing an algorithm 

1. Understanding the problem. 

2. Ascertaining the capabilities of a computational device. 

3. Choosing between exact and approximate problem solving. 

4. Deciding on appropriate data structures. 

5. Algorithm Design Techniques. 

6. Methods of specifying an algorithm 

7. Proving an algorithm's correctness. 

8. Analysing an algorithm. 

9.Codinganalgorithm. 

 

       2 60 

          

           2  30 

            

            3  15 

                 5 

 

 

       2 24 

          

           2  12 

            

            2    6 

                  3      
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1.Understanding the problem: 

✓ To design an algorithm, understand the problem completely by reading the   problem's 

description carefully. 

✓ Read the problem description carefully and clear the doubts. 

✓ Specify exactly the range of inputs the algorithm need to handle. 

✓ Once the problem is clearly understandable, then determine the overall goals but it should be 

in a precise manner. 

✓ Then divide the problem into smaller problems until they become manageable size. 

2. Ascertaining the capabilities of a computational device 

Sequential Algorithm: 

✓ Instructions are executed one after another, one operation at a time. 

✓ This is implemented in RAM model. 

Parallel Algorithm:  

✓ Instructions are executed in parallel or concurrently. 

3. Choosing between exact and appropriate problem solving 

✓ The next principal decision is to choose between solving the problem exactly or 

solving the problem approximately. 

✓ The algorithm used to solve the problem exactly called exact algorithm. 

✓ The algorithm used to solve the problem approximately is called approximation 

algorithm. 

Reason to choose approximate algorithm 

o There are important problems that simply cannot be solved exactly  

such as 

▪ Extracting square roots. 

▪ Solving non linear equations. 

▪ Evaluating definite integrals. 

✓ Available algorithms for solving problem exactly can be unacceptably slow, because 
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of the problem’s intrinsic complexity. Ex: Travelling salesman problem 

4. Deciding on appropriate data structures 

Data structure is important for both design and analysis of algorithms. 

Algorithm + Data Structures = Programs. 

In Object Oriented Programming, the data structure is important for both design and analysis 

of algorithms. 

The variability in algorithm is due to the data structure in which the data of the program are 

stored such as  

1. How the data are arranged in relation to each other.  

2. Which data are kept in memory  

3. Which data are kept in files and how the files are arranged. 

4. Which data are calculated when needed? 

5. Algorithm Design Techniques 

An algorithm design techniques or strategy or paradigm is general approach to solving 

problems algorithmically that is applicable to a variety of problems from different areas of 

computing. 

Uses 

✓ They provide guidance for designing algorithms or new problems. 

✓ They provide guidance to problem which has no known satisfied algorithms. 

✓ Algorithm design technique is used to classify the algorithms based on the design 

idea. 

✓ Algorithm design techniques can serve as a natural way to categorize and study the 

algorithms. 

6. Methods of specifying an algorithm 

There are two options, which are widely used to specify the algorithms. 

They are 

o Pseudo code 

o Flowchart 

Pseudo code 

o A pseudo code is a mixture of natural language and programming language 

constructs. 

o A pseudo code is more precise than a natural language 

o For simplicity, declaration of the variables is omitted. 

o For, if and while statements are used to show the scope of the variables. 

o "←" (Arrow) - used for the assignment operation. 

o "//" (two slashes) - used for comments. 

Flow chart 

o It is a method of expressing an algorithm by a collection of connected geometric 

shapes containing description of the algorithms steps. 

o It is very simple algorithm. 

o This representation technique is inconvenient. 

 

7.  Proving an Algorithm's correctness 

Once an algorithm has been specified, then its correctness must be proved. 

✓ An algorithm must yield a required result for every legitimate input in a finite amount 

of time. 

✓ A mathematical induction is a common technique used to prove the correctness of the 

algorithm. 

✓ In mathematical induction, an algorithm's iterations provide a natural sequence of 

steps needed for proofs. 

✓ If the algorithm is found incorrect, need to redesign it or reconsider other decisions. 

8. Analysing an algorithm 

✓ Efficiency of an algorithm is determined by measuring the time, space and amount of 
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resources, it uses for executing the program. 

✓ The efficiency of the algorithm is determined with respect to central processing units 

time and internal memory. 

✓ There are two types of algorithm efficiency.  

They are 

o Time efficiency (or) Time Complexity 

o Space efficiency (or) Space Complexity 

Time Efficiency / Time Complexity 

✓ Time efficiency indicates how fast the algorithm runs. 

✓ The time taken by a program to complete its task depends on the number of steps in 

an algorithm. 

✓ The time required by a program to complete its task will not always be the same. 

✓ It depends on the type of problem to be solved. 

It can be of two types. 

o Compilation Time  

o Run Time (or) Execution Time 

✓ The time (T) taken by an algorithm is the sum of the compile time and execution 

time. 

Compilation Time 

✓ The amount of time taken by the compiler to compile an algorithm is known as 

compilation time. 

✓ During compilation time, it does not calculate the executable statements, it calculates 

only the declaration statements and check for any syntax and  semantic errors. 

✓ The different compilers can take different times to compile the same program. 

Execution Time 

✓ The execution time depends on the size of the algorithm. 

✓ If the number of instructions in an algorithm is large then the run time is also large. 

✓ If the number of instructions in an algorithm is small then the time need to execute 

the program is small. 

✓ The execution time is calculated for executable statements and not for the declaration 

statements.  

✓ The complexity is normally expressed as an order of magnitude. 

✓ Example: O (n^ 2)  

✓ The time complexity of a given algorithm is defined as computation of function f() as 

a total number of statements that are executed for computing the value f(n). 

✓ The time complexity is a function which depends on the value of n. 

The time complexity can be classified as 3 types.  

They are 

1. Worst Case analysis 

2. Average Case analysis  

3. Best Case analysis 

Worst Case Analysis 

✓ The worst case complexity for a given size corresponds to the maximum complexity 

encountered among all problem of the same size. 

✓ Worst case complexity takes a longer time to produce a desired result. 

This can be represented by a function f(n). 

f(n) =n^2 or n log n 

Average Case Analysis 

✓ The average case analysis is also known as the expected complexity which gives 

measure of the behaviour of an algorithm averaged over all possible problem of the 

same size. 

✓ Average case is the average time taken by an algorithm for producing a desired 

output. 
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Best Case Analysis 

✓ Best case is a shortest time taken by an algorithm to produce the desired result. 

Space Complexity 

✓ Space efficiency indicates how much extra memory the algorithm needs. 

✓ The amount of storage space taken by the algorithm depends on the type of the 

problem to be solved. 

✓ The space can be calculated as, 

✓ A fixed amount of memory occupied by the space for the program code is space 

occupied by the variable used in the program. 

✓ A variable amount of memory occupied by the component variable dependent on the 

problem is being solved. 

✓ This space is more or less depending upon whether the program uses iterative or 

recursive procedures. 

There are three different space considered for determining the amount of memory used by the 

algorithm. 

They are 

o Instruction Space 

o Data Space 

o Environment Space 

Instruction Space 

✓ When the program gets compiled, then the space needed to store the compiled 

instruction in the memory is called instruction space. 

✓ The instruction space independent of the size of the problem 

Data Space 

✓ The memory space used to hold the variables of data elements are called data space. 

✓ The data space is related to the size of the Problem 

Environment Space 

✓ It is the space in memory used only on the execution time for each Function call. 

✓ It maintains runtime stack in that it holds returning address of the previous functions. 

✓ Every function on the stack has return value and a pointer on it. 

Characteristics of an algorithms 

o Simplicity 

o Generality 

Simplicity 

o Simpler algorithms are easier to understand. 

o Simpler algorithms are easier to program. 

o The resulting programs contains only few bugs. 

o Simpler algorithms are more efficient compared to the complicated 

alternatives. 

Generality 

o The characteristic of an algorithm generality has two issues. 

o They are  

▪ Generality' of the problem the algorithm solves. 

▪ Range of inputs it accepts.  

9. Coding an Algorithm 

✓ Implementing an algorithm correctly is necessary but not sufficient to diminish the 

algorithm's power by an inefficient implementation. 

✓ The standard tricks such as computing a loop's invariant (an expression that does not change 

its value) outside the loop, collecting common sub expressions, replacing expensive 

operations by cheaper ones and so on should be known to the programmers such factors can 

speed up a program only by a constant factor, where as a better algorithm can make a 

difference in running time by orders of magnitude. 
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✓ Once an algorithm has been selected, a 10-50% speed up may be worth an effort. 

✓ An algorithm's optimality is not about the efficiency of an algorithm but about the 

complexity of the problem it solves. 

3. Explain the important problem types. 

     Some of the most important problem types are 

1. Sorting 

2. Searching 

3. String Matching (or) String processing 

4. Graph Problems 

5. Combinatorial problems 

6. Geometric problems 

7. Numerical Problems 

1. Sorting 

✓ Sorting means arranging the elements in increasing order or in decreasing order. 

✓ The sorting can be done on numbers , characters (alphabets), string or employees 

record.  

✓ Many algorithms are used to perform the task of sorting. 

✓ Sorting is the operation of arranging the records of a table according to the key value 

of the each record. 

✓ A table of a file is an ordered sequence of records r[l], r[2].. r[n] each containing a 

key k[l], k[2]....k[n]. The table is sorted based on the key. 

Properties of Sorting Algorithms 

The two properties of Sorting Algorithms are 

1. Stable 

     2. In-place 

Stable: 

✓ A sorting algorithm is called stable, if it preserves the relative order of any two equal 

elements in its input. 

✓ In other words, if an input list contain two equal elements in positions i and j, where i<j, then 

in the sorted list they have to be in position i' and j' respectively, such that i' < j' 

In-place 

✓ An algorithm is said to be in-place if it does not require extra  memory, except, possibly for a 

few memory units. 

The important criteria for the selection of a sorting method for the given set of data items are as 

follows. 

1. Programming time of the sorting algorithm. 

2. Execution time of the program  

3. Memory space needed for the programming environment  

The main objectives involved in the design of sorting algorithms are 

1. Minimum number of exchanges. 

2. Large volume of data blocks movement. 

Types of Sorting 

The two major classification of sorting methods are 

1. Internal Sorting methods  

2. External Sorting methods 

Internal Sorting 

✓ The key principle of internal sorting is that all the data items to be sorted are retained in the 

main memory and random access memory. 

✓ This memory space can be effectively used to sort the data items. 

✓ The various internal sorting methods are 

1. Bubble sort 

2. Selection sort 

3. Shell sort  
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4. Insertion sort 

5. Quick sort 

6. Heap sort 

External Sorting 

✓ The idea behind the external sorting is to move data from secondary storage to mail 

memory in large blocks for ordering the data. 

✓ The most commonly used external sorting method is merge sort. 

2. Searching   

✓ One of the important applications of array is searching 

✓ Searching is an activity by which we can find out the desired element from the list. The 

element which is to be searched is called search key 

✓ There are many searching algorithm such as sequential search , Fibonacci search and more. 

Searching in dynamic set of elements 

✓ There may be of elements in which repeated addition or deletion of elements occur.  

✓ In such a situation searching an element is difficult.  

✓ To handle such lists supporting data structures and algorithms are needed to make the 

list balanced (organized) 

3. String processing 

A string is a collection of characters from an alphabet. 

Different type of strings are 

o Text string  

o Bit string  

Text String  It is a collection of letters, numbers and special characters. 

Bit String    It is collection of zeros and ones. 

• Operations performed on a string are 

1. Reading and writing strings  

2. String concatenation   

3. Finding string length  

4. String copy 

5. String comparison 

6. Substring operations 

7. Insertions into a string 

8. Deletions from a string  

9. Pattern matching 

Pattern Matching or String matching  

The process of searching for an occurrence of word in a text is called Pattern matching. 

Some of the algorithms used for pattern matching are 

1. Simple pattern matching algorithm 

2. Pattern matching using Morris Pratt algorithm 

3. Pattern matching using Knuth-Morris-Pratt algorithm 

4. Graph Problems 

✓ Graph is a collection of vertices and edges.  

✓ Formally, a graph G={ V, E } is defined by a pair of two sets. 

✓ A finite set V of items called Vertices and a set E of pairs of these items called edges. 

✓ If the pairs of vertices are ordered, then G is called a directed graph because every edge is 

directed. 

✓ In a directed graph the direction between two nodes are not same       G(V,W)!=G(W,V) 

✓ If the pair of the vertices are unordered then G is called an undirected graph. 

✓ In undirected graph, the edges has no specific direction. 

✓ The graph problems involve graph traversal algorithms, shortest path algorithm and 

topological sorting and so on. Some graph problems are very hard to solve.  

✓ For example travelling salesman problem, graph colouring problems 

5. Combinatorial Problems 
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✓ The travelling salesman problem and the graph colouring problems are examples of 

combinatorial problems. 

✓ A combinatorial object such as a permutation a combination or a subset that satisfies 

certain constraints and has some desired property such as maximizes a value or 

minimizes a cost should be find. 

✓ Combinatorial problems are the most difficult problems.  

The reason is, 

1. As problem size grows the combinatorial objects grow rapidly and reach  to huge   

value. size. 

2. There is no algorithms available which can solve these problems in finite   

    amount of time 

3. Many of these problems fall in the category of unsolvable problem. 

Some combinatorial problems can be solved by efficient algorithms. 

6. Geometric Problems 

✓ Geometric algorithms deal with geometric objects such as points ,lines and polygons. 

✓ The procedure for solving a variety of geometric problems includes the problems of 

constructing simple geometric shapes such as triangles, circles and so on. 

The two classic problems of computational geometry are the  

1. Closest pair problem  

2. Convex hull problem 

✓ The closest pair problem is self explanatory. Given n points in the plane, find the closest pair 

among them. 

✓ The convex hull problem is used to find the smallest convex polygon that would include all the 

points of a given set. 

✓ The geometric problems are solved mainly in applications to computer graphics or in robotics 

6.Numerical problems 

✓ Numerical problems are problems that involve mathematical objects of continuous nature 

such as solving equations and systems of equations computing definite integrals evaluating 

functions and so on. 

✓ Most of the mathematical problems can be solved approximate algorithms. 

✓ These algorithms require manipulating of the real numbers; hence we may get wrong output 

many times.  

 

3.Explain the fundamentals of the analysis framework. Or  explain time-space trade off of 

the algorithm designed. April/May 2019 

 

• Efficiency of an algorithm can be in terms of time or space.  

• This systematic approach is modelled by a frame work called as analysis frame work. 

Analysis framework  

o The efficiency of an algorithm can be decided by measuring the performance of 

an algorithm.  

o The performance of an algorithm is computed by two factors 

▪ amount of time required by an algorithm to execute 

▪ amount of storage required by an algorithm 

Overview 

• Space complexity 

• Time complexity 

• Measuring an Input's size 

• Measuring Running Time 

• Orders of Growth 

Space complexity  

• The space complexity can be defined as amount of memory required by an 

algorithm to run. 



 

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 1 

 

 

  

27 

• To compute the space complexity we use two factors: constant and instance 

characteristics. 

• The space requirement S(p) can be given as S(p) = C+ S(p) 

Where C is a constant i.e. fixed part and it denotes the space of inputs and 

outputs. 

Time complexity    

• The time complexity of an algorithm is the amount of computer time required by 

an algorithm to run to completion. 

• For instance in multiuser system, executing time depends on many factors such as 

o System load 

o Number of other programs running  

o Instruction set used 

o Speed underlying hardware 

• The time complexity is therefore given in term of frequency count 

o Frequency count is a count denoting number of times of execution of statement 

Example 

For (i=0; i<n; i++) 

{ 

   sum = sum + a[i]; 

} 

 

Statement Frequency count 

i=0 1 

i<n 

 

 

 

This statement executes for (n+1) times. When 

conditions is true i.e. when i<n is true , the execution 

happens to be n times , and the statement execute once 

more when i<n is false 

i++ n times 

sum = sum + a[i] n times 

Total 3n + 2 

Measuring an Input's size 

• All algorithms run longer on larger inputs. 

• Ex: Sorting larger arrays, multiply larger matrices etc. 

• Investigates an algorithm efficiency as a function of some parameter n indicating the 

algorithm input size. 

• Example: 

o In problem of evaluating a polynomial p(x) = an x n + ….+ a0 of degree n, the 

parameter will be the polynomial's degree or the number of its coefficients 

which is larger by one than its degree. 

• In spell checking algorithm,  

o If algorithm examines the individual character of its input, then the size of the 

input is the no. of characters. 

o If the algorithm processes the word, the size of the input is the no. of words. 

Measuring Running Time 

• Some units of time measurement such as a second, a millisecond and so on can be 

used to measure the running time of a program implementing the algorithm. 

• Drawbacks 

 l. Dependence on the speed of a particular computer 

2. Dependence on the quality of a program implementing the algorithm. 

3. The compiler used in generating the machine code. 
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4. The difficulty of clocking the actual running time of the program  

• Since we are in need to measure an algorithm's efficiency, we should have a metric 

that does not depend on these factors. 

• One possible approach is to count the number of times of the algorithm's operations is 

executed. But this approach is difficult and unnecessary. 

• The main objective is to identify the most important operation of the algorithm, called 

the Basic Operation - the operation contributing the most to the total running time, 

and compute the number of times the basic operation is executed. 

• It is not so difficult to identify the basic operation of an algorithm: it is usually the 

most time consuming operation in the algorithm's innermost loop. 

Example  

• Most sorting algorithms work by comparing the elements (keys) of a list being 

sorted with each other. For such algorithms the basic operation is a Key 

Comparison. 

 

 

 

 

 

 

   

 

 

 

 

The formula to compute the execution time using basic operation is  

.  T(n) ≈ Cop C(n) 

 Where T(n) – running time 

  C(n) – no. of times this operation is executed. 

  Cop – execution time of algorithms basic operation. 

Orders of Growth  

• Measuring the performance of an algorithm in relation with the input size n is called 

order of growth.  

Worst Case, Best Case and Average Case efficiencies   

• It is reasonable to measure an algorithm's efficiency as a function of a    parameter 

indicating the size of the algorithm's input. 

• But for many algorithms the running time depends not only on an input size but also 

on the specifics of a particular input. 

 

Example: Sequential Search or Linear Search AU: Dec -11,  Marks 10 

 

ALGORITHM SequentialSearch(A[0..n − 1], K) 

//Searches for a given value in a given array by sequential search 

//Input: An array A[0..n − 1] and a search key K 

//Output: The index of the first element in A that matches K 

// or −1 if there are no matching elements 

i ←0 

while i < n and A[i] _= K do 

i ←i + 1 

if i < n return i 

                      else return -1 

• This algorithm searches for a given item using some search key K in a list of 'n' 

elements by checking successive elements of the list until a match with the search key 

Problem statement Input Size Basic operation 

Searching a key 

element from the 

list of n elements 

List of n elements Comparison of key with every 

element of list 

 

Performing matrix 

multiplication 

The two matrixes with 

order n×n 

Actual multiplication of the 

elements in the matrices 

Computing GCD of 

two numbers 

Two numbers Division 
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is found or the list is exhausted. 

• The algorithm makes the largest number of key comparisons among all possible 

inputs of size n:Cworst(n)=n 

Worst case efficiency  

• The worst case efficiency of an algorithm is its efficiency for the worst case input of 

size n, which is an input (or inputs) of size n. For which the algorithm runs the 

longest among all possible of that size. 

• The way to determine the worst case efficiency of an algorithm is that: 

o Analyse the algorithm to see what Kind of inputs yield the largest value of the 

basic operations count C(n) among all possible inputs of size n and then 

compute is w value  Cworst  = (n). 

Best case efficiency 

• The best case efficiency of an algorithm is its efficiency for the best case input of size 

n, which is an input (or inputs) of. size n for which the algorithm runs the fastest 

among all possible inputs of that size. 

• The way to determine the best case efficiency of an algorithm is as follows. 

o First, determine the kind of inputs of size n.  

o Then ascertain the value of C(n) on these inputs. 

• Example: For sequential search, the best case inputs will be lists of size 'n' with  their 

first elements equal to a search key: Cbest(n) = 1. 

Average case efficiency 

• It yields the necessary information about an algorithm's behaviour on a "typical" or 

"random" input.  

• To determine the algorithm's average case efficiency some assumptions about   

possible inputs of size 'n'.  

• The average number of key comparisons Cavg (n) can be computed as follows: 

o In  case of a successful search the probability of the first match occurring in 

the position of the list is p/n for every i. and the number of comparisons made 

by the algorithm in such a situation is obviously ‘i’. 

o In case of an unsuccessful search, the number of comparisons is 'n'  with the 

probability of such a search being (1-p). Therefore, 

 

Cavg(n)=[1. +2. +......i. +...n. +]+n.(1-p) 

  = [1+2+3+....+i+...+n]+n(1-p) 

 

  = +n(1-p) 

 

 Cavg(n)= + n(1-p) 

 

Example:  

o If p = 1 (i.e.) if the search is successful, then the average number of  key 

comparisons made by sequential search is (n+1)/2. 

o If p = 0 (i.e.) if the search is unsuccessful, then the average number of key 

comparisons will be 'n' because the algorithm will inspect all n elements on all 

such inputs. 

 

4. Explain the Asymptotic Notations and its properties? Or explain briefly Big oh notation 

, Omega notation and Theta notation give an example (Apr/May-2017) or what are the 

Rules of Manipulate Big-Oh Expression and about the typical growth rates of 

There may be n elements at 

which chances of ‘not getting 

element’ are possible. Hence n . 

(1-p) 
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algorithms? Nov/Dec 2017 Nov/Dec 2018 

Define Big O notation, Big Omega and Big Theta Notation. Depict the same graphically 

and explain. May/June 2018 , Nov/Dec 2019 

Explain the importance of asymptotic analysis for running time of an algorithm with an 

example. (April/May 2021) 

Asymptotic notations are mathematical tools to represent time complexity  of algorithms for 

measuring their efficiency. Types : 

o Big Oh notation - 'O'  

o Omega notation - 'Ω' 

o Theta notation - ’Θ’ 

o Little Oh notation - 'o ' 

Big Oh notation (O) 

o The big oh notation is denoted by ‘O’.  

o It is a method of representing the upper bound of algorithm’s running time.  

o Using big oh notation we can give longest amount of time taken by the 

algorithm to complete. 

Definition 

A function t(n) is said to be in O(g(n)) (t(n) Є O(g(n))), if t(n) is bounded above by constant 

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative 

integer n0 such that  

o t(n) ≤ c*g(n)                        for all n ≥ n0. 

o  
Example 1: 

Consider function t(n) = 2n + 2 and g(n) = n2. Then we have to find some 

constant c, so that f(n) ≤ c*g(n).  

As t(n) = 2n + 2 and g(n) = n2. Then we find c for n=1 then  

  t(n)  =  2n + 2 

          = 2(1) +2 

   t(n)  = 4 

And g(n) = n2 

                   =  (1) 2 

   g(n)  =  1 

i.e t(n)  > g(n) 

 

if n = 2 then, 

t(n)  =  2n + 2 

                   = 2(2) +2 

t(n)  = 6 

And g(n)  = n2 

                    =   (2) 2 

   g(n)  =  4 

i.e t(n)  > g(n) 

 

if n = 3 then, 

t(n)  =  2n + 2 
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       = 2(3) +2 

t(n)  = 8 

And g(n)  = n2 

          =   (3) 2 

   g(n)  =  9 

i.e t(n)  <  g(n) is true. 

Hence we can conclude that for n> 2, we obtain  

t(n)  < g(n) 

Thus always upper bound of existing time is obtained by big oh notation. 

 

Omega Notation (Ω) 

Omega notation is denoted by ‘Ω’.  

This notation is used is to represent the lower bound of algorithm’s running time.  

Using omega notation  we can denote shortest amount of time taken by algorithm. 

 

Definition   

A function t(n) is said to be in Ω(g(n)) (t(n) Є Ω(g(n))), if t(n) is bounded below by constant 

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative 

integer n0 such that  

o t(n) ≥ c*g(n)                        for all n ≥ n0. 

▪  
o Example 1: 

Consider  t(n)=2n2  + 5 and g(n) = 7n 

Then   if n = 0 

          t(n)  =  2 (0)2 + 5 

      = 5 

          g(n)  = 7(0) 

         = 0   i.e t(n) > g(n) 

But        if  n = 1 

       t(n)  =  2 (1)2 + 5 

        = 7 

         g(n) = 7(1) 

                  = 7    i.e  t(n) = g(n) 

But        if  n = 2 

       t(n)  =  2 (2)2 + 5 

        = 9 

       g(n) = 7(2) 

        = 12    i.e  t(n) < g(n) 

          But        if  n = 3 

       t(n)  =  2 (3)2 + 5 

            = 18 + 5 

                                   = 23 

                  g(n) = 7(3) 

              = 21    i.e  t(n) > g(n) 

Thus for n>3 we get t(n) > c * g(n). 

It can be represented as  
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2n2 + 5 ∈Ω(n) 

Theta Notation (Θ) 

The theta notation is denoted by  Θ. By this method the running time is between upper 

bound and lower bound. 

 

Definition 

A function t(n) is said to be in Θ(g(n)) (t(n) Є Θ(g(n))), if t(n) is bounded both above and 

below by constant multiple of g(n) for all values of n, and if there exist a positive constant c1 

and c2  and non negative integer n0 such that  

o C2*g(n) ≤ t(n) ≤ c1*g(n)                 for all n ≥  

n0. 

•   
 

Example 1: 

If  t(n) = 2n + 8 and g(n) = 7n, 5n 

Where n ≥ 2 

C2*g(n) ≤ t(n) ≤ c1*g(n)                 for all n ≥ 

Θ(g(n)) = O(g(n) ) Ω(g(n)) 

(t(n) Є Θ(g(n))) 

Similarly t(n) = 2n + 8 

   g(n) = 7n 

  g(n) = 5n 

i.e    5n < 2n + 8 < 7n  for n ≥ 2 

       Here c2 = 5  and c1 = 7 with n0 = 2 

Little oh notation(o) 

The function t(n) = o(g(n)), if O(g(n)) and t(n) <> (g(n)) 

Example 

  t(n) = 3n+2 

  Where n>0, 3n+2 ≤ 5 n2 

  By definition of Big Oh 

   t(n) = Cg(n) 

   C = 5; g(n) = n2 

  But t(n) = 3n+2 < > (n2) 

  Therefore t(n) = 3n+2 = o(n2) 

 

Useful property involving the Asymptotic notation: 

 The following property is useful in analyzing algorithms that comprise two 

consecutively executed parts. 

Theorem 

 If t1(n) Є  O(g1(n)) and t2(n) Є   O(g2(n)) then, 

  t1(n) + t2(n) Є  (max {g1(n),g2(n)}) 

Proof 

 Since   t1(n) Є  O(g1(n)), there exist some constant C1 and some non  

negative integer n1 such that  

  t1(n) ≤ C1 (g1(n)) for all n ≥ n1 

Since 
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  t2(n)  Є    O(g2(n)) 

  t2(n) ≤ C2 (g2(n)) for all n ≥ n2 

Let us denote, 

  C3=max {C1, C2} and  

Consider n ≥ max {n1, n2}, so that both the inequalities can be used. 

The addition of two inequalities becomes, 

   

t1(n)+ t2(n)  ≤ C1 (g1(n))+ C2 (g2(n)) 

           ≤ C3 (g1(n))+ C3 (g2(n)) 

                     ≤ C3 2 max{g1(n), (g2(n))} 

Hence, 

t1(n) +t2(n) Є  O (max {g1(n),g2(n)}),  

with the constants C and n0 required by the definition being 2C3 = 2 max (C1, C2) and 

max {n1, n2} respectively. 

The property implies that the algorithms overall efficiency will be determined by the 

part with a larger order of growth. 

(i.e.) its least efficient part is 

t1(n) Є O(g1(n)) t1(n) +t2(n) Є O (max {g1(n),g2(n)})  

t2(n) Є O(g2(n)) 

 

Using limits for comparing orders of growth 

 

There are 3 principal cases,  

 

L' Hospital's rule. 

 

 

 

Stirling’s formula 

                 n!≈  n for large values of n. 

 

Asymptotic Growth Rate 

Three notations used to compare orders of growth of an algorithm’s basic 

operation count 

➢ O(g(n)): class of functions f(n) that grow  no faster than g(n) 

➢ Ω(g(n)): class of functions f(n) that grow  at least as fast as g(n) 

➢ Θ (g(n)): class of functions f(n) that grow at same rate as g(n) 

                   

0, Implies that (n) has a smaller order                                                      

of growth than g(n) 

C, Implies that (n) has a same order                                                      

of growth than g(n) 

∞,  Implies that (n) has a larger order                                                      

of growth than g(n) 

 =  
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Basic Asymptotic Efficiency Classes 

Class Name Comments 

1 Constant Short of best-case efficiencies 

logn Logarithmic Cutting a problem size by a constant factor 

n Linear 
Algorithms that scan a list of size n.(eg sequential 

search) 

n logn n-log-n Many divide and conquer algorithm 

n2 Quadratic 
Efficiency of algorithm with two embedded 

loops. 

n3 Cubic 
Efficiency of algorithm with three embedded 

loops. 

2n Exponential Generate all the subsets of an n element set. 
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n! Factorial 
Algorithm that generate all permutations of an n 

element set 

 

 

5. Explain the Mathematical analysis for non-recursive algorithm or write an 

algorithm for determining the uniqueness of an array. Determine the time complexity of your 

algorithm. (Apr/May-2017) April/May 2019 

 

General plan for analyzing efficiency of non-recursive algorithm 

1. Decide the input size based on parameter n. 

2. Identify the algorithm basic operation(s).  

3. Check whether the number of times the basic operation is  executed depends on only on  

     the size of the input. 

4. Set up a sum expressing the number of times the algorithm basic  operation is excited 

5. Simplify the sum using standard formula  and rules 

 

Example 1: Problem for finding the value of the largest element in a list of   

                   n numbers 
The pseudo code to solving the problem is 

 

ALGORITHM MaxElement(A[0..n-1]) 

//Problem Description : This algorithm is for finding the  

//maximum value element from the array 

//Input:An array A[0..n-1] of real numbers 

//Output: Returns the largest element from array 

Maxval ← A[0] 

For i ← 1 to n-1 do 

{ 

If ( A[i]>max_value)then 

Maxval ← A[i] 

            } 

Return Max_value 

 

Mathematical Analysis 

Step 1: The input size is the number of elements in the array(ie.),n 

Step 2 : The basic operation is comparison in loop for finding larger value There are two  

             operations in the for loop 

✓ Comparison operation a[i]->maxval 

✓ Assignment operation maxval->a[i] 

Step 3: The comparison is executed on each repetition of the loop. As the  

   comparison is made for each value of n there is no need to find best case   

   worst case and average case analysis.  

Step 4:  Let C(n) be the number of times the comparison is executed.  

  The algorithm makes comparison each time the loop executes. 

  That means with each new value of I the comparison is made.  

 Hence  for i= 1 to n – 1 times the comparison is made . therefore we can    

   formulate C(n) as 

                         C(n) = one comparison made for each value of i 

Step 5 : let us simplify the sum 

Thus C(n) =  

            =n-1 θ (n)  

 

Searching the maximum element from an array 

If any value is large than current 

Max_ Value then set new Max_value 

by obtained larger value 
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Using the rule    θ (n) 

The frequently used two basic rules of sum manipulation are, 

   i=C i R1 

i+bi)= I  + i     R2 

           The two summation formulas are 

1. =u-l+1 

 

Where l≤ u are some lower and upper integer limits S1 

 

2. = =1+2+…..+n 

                             =n(n+1)/2 

                             =1/2n2 o(n2) S2 

Example 2:   Element uniqueness problem-check whether all the element in  

                     the list are distinct                               April/May 2019 
 

ALGORITHM UniqueElements(A[0..n-1]) 

//Checks whether all the elements in a given array are distinct 

//Input :An array A[0..n-1] 

//Output Returns ‘true’ if all elements in A are distinct and ‘false’ 

//otherwise 

for i  to n-2 do 

for j i+1 to n-1 do 

if a[i] = a[j] then 

 return false   

else 

                   return true 

Mathematical analysis  

Step 1: Input size is  n  i.e total  number of elements in the array A 

Step 2: The basic iteration will be comparison of two elements . this    

            operation   the innermost operation in the loop . Hence 

if a[i] = a[j] then comparison will be the basic operation . 

Step 3 : The number of comparisons made will depend upon the input n . 

               but  the algorithm will have worst case complexity if the same  

               element is  located at the end of the list. Hence the basic operation  

              depends  upon the input n and worst case 

 

Worst case investigation 

Step 4: The worst case input is an array for which the number od elements comparison 

cworst(n) is the largest among the size of the array. 

There are two kinds of worst case inputs, They are 

1.Arrays with no equal elements. 

2.Arrays in which the last two elements are pair of equal elements. 

For the above inputs, one comparison is made for each repetition of the inter most loop 

(ie) for each value of the loop's variable 'j' between its limits i+1 and n-1 and this is 

repeated limit for each values of the outer loop (ie) for each value of the loop's variable `i' 

between  0 and n-2. Accordingly, 

C worst (n) = Outer loop × Inner loop 

 

Cworst(n) =  

Step 5: now we will simplify C worst as follows 

               =        Θ  

If any two elements in the array 

are similar then return .false 

indicating that the array elements 

are not distinct 
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               =  

               = -  

Now taking (n-1) as a common factor, we can write 

                
 

               = (n-1)  

                 
Solving this equation we will get   

              = 2( n-1) (n-1) – (n-2) (n-1)/2 

               = ( 2(n 2 – 2n + 1) – (n 2- 3n + 2)) /2 

              = (( n2 – n) / 2 

               =1/2 n2 

                        Θ (n2) 

We can say that in the worst case the algorithm needs to compare all   

 n (n – 1 )/2 distinct of its n elements. 

Therefore C worst(n)= 1/2n2 € o(n2) 

 

EXAMPLE 3  : Obtaining matrix multiplication 
Given two n × n matrices A and B, find the time efficiency of the definition-based 

algorithm for computing their  product C = AB, where A and B are n by n (n*n) 

matrices. 

By definition, C is an n × n matrix whose elements are computed as the scalar (dot) products 

of the rows of matrix A and the columns of matrix B: 

 
 

where C[i, j ]= A[i, 0]B[0, j]+ . . . + A[i, k]B[k, j]+ . . . + A[i, n − 1]B[n − 1, j] for 

every pair of indices 0 ≤ i, j ≤ n − 1. 

 

        b00 
b

01 

 C =    a00
   a01  a03     1 2  

 1 2 3 

          ×    b10 
b

11 

  a10  a11  a12      3 4 

 4 5 6 

    2 × 3    b20 
b

21 

        5 6  3   × 2 

 

The formula for multiplication of the above  two matrices is 

 

 a00 ×b00 + a01 ×b10 + a02 ×b20   a00  ×b01 + a01×b11 + a02×b21 

 

This can be obtained using 

formula /2 

This can be obtained using formula  
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C = 

a10×b00 + a11×b10 + a12×b20    a10×b01  + a11×b11  + a12×b21 

 

 

 

C =    1 × 1 + 2 × 3 + 3 × 5  1 × 2 + 2 × 4   + 3× 6 

  

 4 × 1 + 5 × 3 + 6 × 5  4 × 2 + 5 × 4 + 6 × 6 

 

           

 C =   22 28 

  49 64 

 

Now the algorithm for matrix multiplication is  

 
Mathematical analysis 

 Step 1: The input’s size of above algorithm is simply order of matrices i.e n. 

 Step 2: The basic operation is in the innermost loop and which is   

              
There are two arithmetical operations in the innermost loop here 

1. Multiplication  

2. Addition 

Step 3:  The basic operation depends only upon input size. There are no best   case, worst 

case and average case efficiencies. Hence now we will go   for computing sum. There is just 

one multiplication which is repeated    no   each execution of innermost loop.  ( a for loop 

using variable k ).      Hence we will compute the efficiency for innermost loops. 

 

Step 4: The sum can be denoted by M (n). 

M(n) = outermost  × inner loop × innermost loop ( 1 execution ) 

 

 =[for loop using i]×[for loop using j]×[for loop using k]×                                                                                          

(1 execution) 

                                             

                                                         

                                                 
                                            M(n)= n3 
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Thus the simplified sum is n3. Thus the time complexity of matrix 

multiplication  Θ (n3) 

Running time of the Algorithm T(n) 

The estimation of running time of the algorithm on a particular machine is calculated by 

using the product. 

T (n) ≈ cmM(n) = cmn3  

Where- cm is the time of one multiplication on the machine in question.  

We would get a more accurate estimate if we took into account the time spent on the 

additions, too: 

T (n) ≈ cmM(n) + caA(n) = cmn3 + can
3 = (cm + ca)n

3 

T (n) ≈ cmM(n) = cmn3 

where cm is the time of one multiplication on the machine in question. We would get a more 

accurate estimate if we took into account the time spent on the additions, too: 

Time spend addition CA (n) 

The time speed to perform the addition operation is given by 

T(n) = caA(n)= ca n
3 

Where 

ca is the time taken to perform the one addition. 

Hence the running time of the algorithm is given by  

T (n) ≈ cmM(n) + caA(n) = cmn3 + can
3 = (cm + ca)n

3 

The estimation differs only by the multiplication constants and not by the order of growth. 

 

EXAMPLE 4:The following algorithm finds the number of binary digits in  

                       the binary representation of a positive decimal integer. 

 
Mathematical analysis 

Step 1: The input size is n i.e . The positive integer whose binary digit in binary  

   representation needs to be checked. 

Step 2 : The basic operation is denoted by while loop. And it is each time checking  whether   

              n > 1. The while loop will be executed for the number of time at   which n>1 is true .  

               it will be executed once more when n>1 is false . but when n>1 is false the   

              statements inside while loop wont get executed. 

Step 3: The value of n is halved on each repetition of the loop. Hence efficiency 

            algorithm is equal to log2 n 

Step 4: hence total number of times the while loop gets executed is    [log2 n] + 1 

Hence time complexity for counting number of bits of given number is Θ(log2 n). this  

            indicates floor value of log 2 n 

 

6. Explain the Mathematical analysis for recursive algorithm. (Apr/May-2017) or 

   Discuss the steps in Mathematical analysis for recursive algorithms. Do the same for finding 

factorial of a number. Nov/Dec 2017 or solve the following recurrence equations using iterative 

method or tree  Nov/Dec 2019 



 

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 1 

 

 

  

40 

Discuss various methods used for mathematical analysis of recursive algorithms.May/June 

2018 
General plan for analyzing efficiency of recursive algorithms 

1. Decide the input size based on parameter n . 

2. Identify algorithms basic operations 

3. Check how many times the basic operation is executed.  

To find whether the execution of basic operation depends upon the input size n. 

determine worst, average , and best case for input of size n. if the basic 

operation depends upon worst case average case and best case then that has to be 

analyzed separately. 

4. Set up the recurrence relation with some initial condition and expressing the 

basic operation. 

5. Solve the recurrence or at least determine the order of growth. While solving the 

recurrence we will use the forward and backward substitution method. And 

then correctness of formula can be proved with the help of mathematical 

induction method. 

 

Example 1:Computing factorial of some number n. 
To compare the factorial F(n)=n! for an arbitrary non negative integer 

N! =1.2.3……(n-1).n 

= (n-1)!.n ,for n>1 

      0! =1 

By definition F(n)=F(n-1)!.n 

 

 
 

Mathematical Analysis: 

Step 1: The algorithm’s input size is n.  

Step 2: The algorithm’s basic operation in computing factorial is multiplication . 

Step 3 : The recursive function call can be formulated as  

   According to the formula, F(n) is computed as 

      F(n) = F(n-1) * n,      for n>0 

   And the number of execution is denoted by M(n).  

   The number of multiplication M(n) is computed as 

M(n) = M(n-1)      +       1,    for n>0 

 

 

 

 

M(n-1) multiplication are spent to compute F(n-1). 

One more multiplication is needed to multiply the result by n. 

Step 4: in step 3 the recurrence relation is obtained.  

The equation is 

M(n)=M(n-1) +1, for n>0 

 

To compute 

F(n-1) 

To multiply 

F(n-1) by n 
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Defines M(n)not explicitly(i.e.)as a function  of n, but implicitly as function of its 

value at another point, namely n-1. These equations are called as recurrence 

relations or recurrences. 

o Recurrences relations play an important role in the analysis of algorithm and 

some area of applied mathematics. 

o To solve a recurrence relation M(n)=M(n-1)+1 the formula for the sequence 

M(n) in terms of n only should be find. 

o To determine the unique solution, an initial condition is needed that tells the 

value with which the sequence starts. 

o The initial value is obtained from the condition if n=0 return 1 that makes the 

algorithm stops. 

The condition, if n=0 return 1 tells 2 things 

1. The recursive call stops when n=0 the smallest value for which the  

    algorithm is executed. Hence M(n)=0. 

2. When n=0 the algorithm performs no multiplication 

 
Forward Substitution: 

M(1) = M(0) +1 

M(2) = M(1) + 1 = 1 + 1 =2 

M(3) = M(2) + 1 = 2 + 1=3 

The recurrence relation and the initial condition for the algorithm number of 

multiplication M(n) is 

M(n)=M(n-1)+1,for n<0, M(0)=0 

Backward substitution: 

M(n) = M(n-1) + 1 

Substitute M(n-1) = M(n-2) + 1 

Now M(n) becomes  

                    M(n) = [M(n-2)+1]+1 

       = M(n-2) + 2 

Substitute M(n-2) =M(n-3)+1 

Now M(n) becomes  

M(n)=[M(n-3)+1] + 2 

        = M(n-3) + 3 

From the  substitution method we can establish a general formula as :  

M(n)= M(n-i) + i; 

Since n=0, substitute i=n; 

Now let us prove correctness of this formula using mathematical induction as follows 

Proof 

M(n) = n     by using mathematical induction 

Basis  :  let n = 0  then 
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     M(n) =0 

i.e M(0) = 0=n 

Induction: if we assume M(n – 1) = n-1 then 

       M(n) = M( n-1) + 1 

    = n-1  + 1 

    = n 

i.e    M(n) = n   Thus the time complexity of factorial function is Θ (n) 

 
 

 

 

 

 

Give the general plan for Analyzing the time efficiency of Recursive Algorithms and use 

recurrence to find number of moves for Towers of Hanoi problem. May/June 2018 

Example 2:Tower of Hanoi puzzle 

 
✓ In this puzzle, there are n disks of different sizes, and three pegs. 

✓ Initially all the disks are on the first peg in order if size, the largest on the bottom and 

the smallest on the top. 

✓ The goal is to move all the disks from peg 1 to peg 3 using peg 2 as auxiliary. 

✓ One disk should be moved at a time and do not place a larger disk on top of a smaller 

one. 

✓ The following steps are used to move n>1 disks from peg 1 to peg 3, peg 2 as 

auxiliary. 

1. Move n-1 disks recursively from peg 1 to peg 3.( peg 2 as auxiliary). 

2. Move the largest disk directly from peg 1 to peg 3. 

3.  Move n-1 disks recursively from peg 2 to peg 3.( peg 2 as  

     auxiliary). 

For example, if n=1 then the single disks is moved from source peg to destination peg 

directly.       

A        B          C   

                   
 

                             
General plan to tower of Hanoi problem 

The input size is the number of disks “n”. 

The algorithm basic operation is moving one disks at a time. 

The number of moves M(n) depends only on n. 

The recurrence equation is, 
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M(n)=M(n-1)+1+M(n-1),for n>1; 

M(n)=2M(n-1)+1, for n>1; 

The initial condition M(1)=1 

Now the recurrence relation for number of moves is, 

M(n)=2M(n-1)+1,for n>1 

M(1)=1 

The recurrence relation is solved by using backward substitution method 

Backward substitution Method  

M(n)=2M(n-1)+1 

Substitute 

M(n-1)=2M(n-2)+1 

M(n)=2[2M(n-2)+1]+1 

M(n)=22M(n-2)+2+1 

Substitute 

M(n-2)=2M(n-3)+1 

Now, M(n) becomes  

M(n)=22[2M(n-3)+1]+2+1 

M(n)=23[M(n-3)+22+2+1 

Hence after  I substitution M(n) becomes 

M(n)=2iM(n-i)+2i-1+2i-2+2i-3+…….2+1 

         =2iM(n-i)+2i-1 

Therefore te general formula is   2iM(n-i)+2i-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

1 3 
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Fig. recursive solution to the Tower of Hanoi puzzle 

Solution to recurrence relation is  

Since the initial condition is n=1 becomes i=n-1. 

The recurrence relation is 

M(n)=2iM(n-i)+2i-1      ..................(1) 

Substitute   I=n-1 in (1) 

M(n)=2n-1M(n-(n-1)+2n-1-1 

 =2n-1M(1)+2n-1-1 

  =2n-1+2n-1-1 

 =2n-1 

M(n)= 2n-1   Thus this is an exponential algorithm, It runs unimaginably long time for 

moderate values of n. 

 

Example 3 :To find the number of binary digits in binary representation 

Algorithm BinRec(n) 

//Input: A positive decimal integer n 

//Output: The number of binary   digits in n’s binary representation 

if n=1 

     return 1 

         else  

     return BinRec([n/2])+1 

Recurrence and Initial Condition  

A Recurrence for the number of addition A(n) made by the algorithm is the number of 

addition made in computing BinRec([n/2]) is A([n/2]) plus one more addition is made  

Thus recurrence is  

A(n)=A([n/2])+1,for >n 

A(n)->number of addition made by the algorithm 

A([n/2])->number of addition made to compute A9[n/2]) 

The recursive call end when n is equal to 1 and no addition is made. 

The initial condition is  A(1) = 0 

To solve the recurrence, backward substitutions cannot be used.The reason is the presence on 

[n/2] in the functions argument and the value of n is not power of 2. 

A theorem called Smoothness rule is used to solve the recurrence. 

The standard approach for solving such recurrence is to solve it only for n = 2k . 
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The order of growth observed for n = 2k gives a correct answer about the order of growth of 

all values of n. 

n = 2k takes the form 

A(2k) = A(2k−1) + 1 for k > 0, 

A(20) = 0. 

Now, backward substitutions can be applied. 

Backward Substitution Method 

A(2k) = A(2k−1) + 1  

substitute  A(2k−1) = A(2k−2) + 1 

= [A(2k−2) + 1] + 1  

= A(2k−2) + 2 

 substitute  A(2k−2) = A(2k−3) + 1 

= [A(2k−3) + 1] + 2  

= A(2k−3) + 3 ... ... 

After i iteration 

A(2k)   = A(2k−i) + i  

= A(2k−k) + k 

= A(20) + k 

= A(1) + k 

Thus, we end up with 

A(2k) = A(1) + k = k 

After returning to the original variable  

n = 2k and hence k = log2 n, 

A(n) = log2 n ∈ Ө(log n) 

 

Example 4: Fibonacci series 

A sequence of Fibonacci numbers is 0,1,1,2,3,5,8,13,21,34……….. 

The Fibonacci sequence can be defined by the simple recurrence  

F(n)=F(n-1)+F(n-2),for n>1…………………1 

The two initial conditions are 

F(0)=0 

F(1)=1 

Explicit formula for the nth Fibonacci number 

Backward substitution method is not used to solve the recurrence F(n)=F(n-1)+F(n-2),for 

n>1,because which fails to produce easily discernible pattern. 
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So, the theorem that describes solution to a homogeneous second order linear recurrence with 

constant coefficient is used to solve the problem. 

The homogenous with constant coefficient is  

ax(n)+bx(n-1)+cx(n-2)=0 ……………(2) 

Where, 

a,b,c are fixed real numbers called the coefficients of recurrence and a≠0 

x(n) is the unknown sequence to be found 

The characteristics equation of the recurrence equation is 

Ar2+br+c=0 ………………….(3) 

The recurrence relation can be written as 

F(n)-F(n-1)-F(n-2)=0 ………….(4) 

The characteristics equation for (4) 

r2-r-1=0 

The roots are 

R1,2=  

R1,2=  

R1=  

R2=  

The characteristics equation has two distinct real roots. 

Now the recurrence relation is 

X(n)=αr1
n+βr2

n   ……..(5) 

Substitute r1 and r2 in (5), 

F(n)= α( )n+β( )n  ……….(6) 

Now substitute the value of f(0) and F(1) in equation(6) 

F(0) = α( )0+β( )0 =0 ……….(7) 

F(1)= α( )1+β( )1 =0 ……….(8) 

By solving equation (7) and (8),the linear equation in two unknown α and β 

α+ β=0 

α( )+β( )=0 ……….(11) 



 

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 1 

 

 

  

47 

(11)-(10) gives 

( ) β-( ) β=-1 

 +  β-   +   β = -1 

 β = -1 

 β = -  

Substitute β = -   in (9) 

α + β = 0 

α -   = 0 

α =     β = -  

Substitute the value of α and β in equation (6) 

F(n) =  n -   n 

F(n) =  

Where 

Φ =  

Φ = 1.61803 

Φ^ =-  

Φ^ = - 0.61803 

The constant Φ is known as, Golden Ratio. 

The value of Φ^ is lies between -1 and 0. 

When n goes to infinity, Φ^ gets infinitely small value. So, it can be omitted. 

Therefore F(n) =  Φ n  

So, for every non negative n, F(n) =  Φ n  is rounded to the nearest integer. 

  Algorithm for computing Fibonacci numbers 

First method 

 Algorithm F(n) 

 //Computes the nth Fibonacci number recursively by using its definition. 

 //Input: A nonnegative integer n 

 //Output: The nth Fibonacci number 

 if n<1 

  return n 
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 Else 

  return F(n-1)+(n-2) 

the algorithm’s basic operation is addition. 

Let A(n) is the number of additions performed by the algorithm to compute F(n). 

The number of additions needed to compute F(n-1) is A(n-1) and the number of additions 

needed to compute F(n-2) is A(n-2). 

The algorithm needs one more addition to compute the sum of A(n-1) and A(n-2). 

Thus the recurrence for A(n) is 

  A(n)=A(n-1) + A(n-2)+1, for n>1 

   A(0)=0 

   A(1)=0 

The recurrence A(n)-A(n-1)-A(n-2)=1 is same as F(n)-F(n-1)-F(n-2)=0, but its right hand 

side not equal to zero.  These recurrences are called inhomogeneous recurrences. 

General techniques are used to solve inhomogeneous recurrences. 

The inhomogeneous recurrences is converted into homogeneous recurrence by rewriting the 

in homogeneous recurrence as,A(n)+1]-[A(n-1)+1]-[A(n-2)+1]=0 (14) 

Now substitute, B(n)=A(n)+1 

Now (14) becomes, B(n)-B(n-1)-B(n-2)=0 

   B(0)=0 

   B(1)=1 

Here  B(n)=F(n+1) 

Since   B(n)=A(n)+1 

B(n-1)=A(n) 

So A(n)=B(n)-1 

Substitute F(n+1)-1 …………(15) 

We know that 

F(n)=  

F(n+1)=  ………(16) 

Substitute (16) in (15) 

A(n)= -1 

Hence  

A(n)€  

The poor efficiency class of algorithm could be anticipated from the class of recurrence 
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The reason behind the algorithm inefficiency can be traced by looking at the tree of recursive 

calls n=6 

The same values of the function are evaluated again and again which is extremely 

inefficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig Tree of recursive calls for computing the Fibonacci number for n = 6 

 

7. Find the time complexity and space complexity of the following   problems. Factorial using  

     recursion and compute the nth Fibonacci    number using iterative statements.   Dec 2012 

 

8.Solve the following recurrence relations: or  solve the following recurrence equation: 

T(n)=T(n/2)+1,where n=2k for all k>=0 

T(n)=  T(n/3)+ T(2n/3)+cn,where  ‘c’ is a constant and ‘n’ is the input size. 

  Dec 2012 April/May 2019 

 1. T(n)=   2T(n/2)+3  n>2 

         2              n=2 

 

T(n)=2T(n/2)+3   

      =2{(2T(n/2)+3)/2}+3 

      =2{(2T(n/4)+3/2}+3  

   .... 

      =4T(n/4)+6   

       = 4{(2T(n/2)+3)/4}+6 

   ..... 

       =8T(n/8)+9   

  

F(6) 

F(4) 

F(0) 

 

F(5) 

F(1) 

F(1) F(1) F(0) 

F(2) 

F(0) 
F(1) 

F(4) 

F2) 
F(3) 

F(2) 

F(0) 
F(1) 

F(3) 

F(1) 
F(2) 

F(3) 

F(1) 
F(2) 
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     ---- 

 =2kT(n/2k)+3n 

 T(n)=nlogn+3n 

   Time complexity=o(nlog n) 

 

2. T(n)=      2T(n/2)+cn n>1 

                     a                  n=1  where a and c constants 

 

T(n)=2T(n/2)+cn   

      =2{(2T(n/2)+cn)/2}+cn 

      =2{(2T(n/4)+cn/2}+cn 

      ---- 

      =4T(n/4)+cn+cn 

      = 4{(2T(n/8)+cn/4}+ cn+cn 

               ------ 

       =8T(n/8)+ cn+cn+cn 

    --- 

    =2kT(n/2k)+k(cn) 

 T(n)=nlogn+ k(cn) 

    Time complexity=o(nlog n) 

    

8. Show the following equalities are correct June 2013 

 i. 5n2-6n = Φ(n2) 

 ii. n!=O(nn) 

 iii. n3+106n2=Θ(n3) 

 iv. 2n22n + n log n = Θ(n22n) 

 i. 5n2-6n = Φ(n2) =>higest order of grouth is n2 

 ii. n!=O(nn) =>higest order of grouth O(n)  

 iii. n3+106n2=Θ(n3) =>higest order of grouth O(n3)  

 iv. 2n22n + n log n = Θ(n22n)=>higest order of grouth O(n2)  

  Nov 2010    

9. Prove that for any two functions f(n) and g(n), we have f(n)-> Θ(g(n))  if and only if  

    f(n) -> O(g(n)) and  f(n) ->Ω(g(n))     Nov 2010 

Given function:  

f(n) and g(n) 

f(n)= O(g(n)) when f(n) ≤C1g(n)  for all n≥n0---------(1) 

f(n)= Ω(g(n)) when f(n) ≥C2g(n)  for all n≥n0---------(2) 

from (1) and (2) 

C2 g(n) ≤f(n) ≤ C1g(n)  for all  n≥n0 -------(3) 

(i.e) Θ(g(n)) = O(g(n))Ω(g(n)) 

From (3) f(n) = Θ(g(n)) hence proved 

 

10.  (a)If you have to solve the searching problem for a list of n numbers, how can you take  
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       advantage of the fact that the list is known to be sorted? Give separate answers for lists  

        represented as arrays  lists represented as linked lists. (AU april/may 2015) 

For a sorted array do a binary search to divide the array in half for each query, thus O(lg n). 

If the list is linked you must you do a linear search which is O(n), 

unless you use a linked binary search tree, which is O(lg n) 
 
 
 

11. The best-case analysis is not as important as the worst-case analysis of an algorithm”. 
Yes or No ? Justify your answer with the help of an example. (April/May 2021) 

The Best Case analysis is bogus. Guaranteeing a lower bound on an algorithm doesn't 
provide any information as in the worst case, an algorithm may take years to run. For 
some algorithms, all the cases are asymptotically the same, i.e., there are no worst and best 
cases. For example, Merge Sort. 

 

11.Derive the worst case analysis of merge sort using suitable illustration (AU april/may 2015) 

Efficiency of Merge Sort 

• In merge sort algorithm the two recursive calls are made. Each recursive call focuses 

on n/2 elements of the list .  

• After two recursive calls one call is made to combine two sublist i.e to merge all n 

elements.  

• Hence we can write recurrence relation as  

T(n) =  T(n/2) + T(n/2) + cn 

           T(n/2) = Time taken by left sublist 

           T(n/2) = time taken by right  sublist         

T(n) = time taken for combining two sublists 

        where n> 1 T (1) = 0 

The time complexity of merge sort can be calculated using two methods 

▪ Master theorem 

▪ Substitution method   

Master theoremLet , the recurrence relation for merge sort is  

T(n) =  T(n/2)   +    T(n/2)  +    cn 

Let T(n) =  aT(n/b)  +    f(n)   be a recurrence relation 

i.e.  T(n) =  2T(n/2)  +    cn   -------  ( 1 ) 

T(1) =  0 ----------- (2 ) 

As per master theorem T(n) = Θ (n d long n )  if a = b   

As equation  ( 1),a =2 , b = 2 and f(n) = cn and a = bd       i.e 2 = 2`  

This case gives us , T (n) =Θ (n log2 n) 

Hence the average and worst case time complexity of merge sort is  

C worst (n) = (n log2 n) 

Substitution method  Let, the recurrence relation for merge sort be 

T(n) =  T(n/2)   +    T(n/2)  +    cn for n>1 

i.e.  T(n) =  2T(n/2)  +    cn        for n>1            ------- (3) 
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   T(1) =  0         -------(4) 

Let us apply substitution on equation ( 3) . 

Assume     n=2k 

T(n) =  2T(n/2)  +    cn      

T(n) =  2T(2k/2 ) +    c.2k 

T(2k) =  2T(2k-1) +    c.2k       

If k = k-1 then,  

T(2k) =  2T(2k-1) +    c.2k       

T(2k) =  2[2T(2k-2) + c.2k -1] + c.2k       

T(2k) = 22 T(2k-2) + 2.c.2k -1  + c .2k       

T(2k) = 22 T(2k-2) + 2.c.2k /2   + c.2k       

T(2k) = 22 T(2k-2) + c.2k   +    c.2k       

T(2k) = 22 T(2k-2) + 2c .2k   

Similarly we can write, 

T(2k) = 23 T(2k-3) + 3c .2k   

T(2k) = 24 T(2k-4) + 4c .2k   

….. 

…. 

T(2k) = 2k T(2k-k) + k.c.2k   

T(2k) = 2k T(20) + k.c.2k   

T(2k) = 2k T(1) + k.c.2k  -------- (5) 

But as per equation (4), T(1) =0 

There equation (5) becomes ,  

T(2k) = 2k .0 +. k. c . 2k   

T(2k) = k. c . 2k   

But we assumed n=2k , taking logarithm on both sides.i.e. log 2 n = k 

Therefore     T(n) = log 2 n. cn 

Therefore   T (n) =Θ (n log2 n) 

Hence the average and worst case time complexity of merge sort is  

   C worst (n) = (n log2 n) 

Time complexity of merge sort 

  Best case Average case Worst case 

Θ (n log2 n) Θ (n log2 n) Θ (n log2 n) 

 

12.write Insertion sort algorithm and estimate its running time. 
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✓ Like selection sort, insertion sort loops over the indices of the array. It just calls insert on 

the elements at indices 1,2,3,…,n−1. Just as each call to indexOfMinimum took an amount 

of time that depended on the size of the sorted subarray, so does each call to insert. 

Actually, the word "does" in the previous sentence should be "can," and we'll see why. 

✓ Let's take a situation where we call insert and the value being inserted into a subarray is 

less than every element in the subarray.  

✓ For example, if we're inserting 0 into the subarray [2, 3, 5, 7, 11], then every element in the 

subarray has to slide over one position to the right. So, in general, if we're inserting into a 

subarray with k elements, all k might have to slide over by one position. 

✓  Rather than counting exactly how many lines of code we need to test an element against a 

key and slide the element, let's agree that it's a constant number of lines; let's call that 

constant ccc. Therefore, it could take up to c⋅k lines to insert into a subarray of k elements. 

✓ Suppose that upon every call to insert, the value being inserted is less than every element in 

the subarray to its left. When we call insert the first time, k=1. The second time, k=2. The 

third time, k=3. And so on, up through the last time, when k=n−1.  

Therefore, the total time spent inserting into sorted subarrays 

isc⋅1+c⋅2+c⋅3+⋯c⋅(n−1)=c⋅(1+2+3+⋯+(n−1))  

That sum is an arithmetic series, except that it goes up to n−1n-1n−1 rather than nnn. Using 

our formula for arithmetic series, we get that the total time spent inserting into sorted 

subarrays is 

c⋅(n−1+1)((n−1)/2)=cn2/2−cn/2. 

Using big-Θ notation, we discard the low-order term cn/2 and the constant factors c and 1/2, 

getting the result that the running time of insertion sort, in this case, is Θ(n2). 

Can insertion sort take less than Θ(n2) time? The answer is yes. Suppose we have the array 

[2, 3, 5, 7, 11], where the sorted subarray is the first four elements, and we're inserting the 

value 11. Upon the first test, we find that 11 is greater than 7, and so no elements in the 

subarray need to slide over to the right.  

✓ Then this call of insert takes just constant time. Suppose that every call of insert 

takes constant time. Because there are n−1 calls to insert, if each call takes time that 

is some constant ccc, then the total time for insertion sort is c⋅(n−1) which is Θ(n), 

not Θ(n2). 

✓ Can either of these situations occur? Can each call to insert cause every element in 

the subarray to slide one position to the right? Can each call to insert cause no 

elements to slide? The answer is yes to both questions.  

✓ A call to insert causes every element to slide over if the key being inserted is less 

than every element to its left. So, if every element is less than every element to its 

left, the running time of insertion sort is Θ(n2).  

✓ What would it mean for every element to be less than the element to its left? The 

array would have to start out in reverse sorted order, such as [11, 7, 5, 3, 2]. So a 

reverse-sorted array is the worst case for insertion sort. 

✓ How about the opposite case? A call to insert causes no elements to slide over if the 

key being inserted is greater than or equal to every element to its left. So, if every 

element is greater than or equal to every element to its left, the running time of 

insertion sort is Θ(n). 

✓  This situation occurs if the array starts out already sorted, and so an already-sorted 

array is the best case for insertion sort. 
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What else can we say about the running time of insertion sort? Suppose that the array starts 

out in a random order. Then, on average, we'd expect that each element is less than half the 

elements to its left.  

✓ In this case, on average, a call to insert on a subarray of k elements would slide k/2 

of them. The running time would be half of the worst-case running time. But in 

asymptotic notation, where constant coefficients don't matter, the running time in the 

average case would still be Θ(n2), just like the worst case. 

✓ What if you knew that the array was "almost sorted": every element starts out at most 

some constant number of positions, say 17, from where it's supposed to be when 

sorted?  

✓ Then each call to insert slides at most 17 elements, and the time for one call of 

insert on a subarray of kkk elements would be at most 17⋅c. Over all n−1 calls to 

insert, the running time would be 17⋅c⋅(n−1), which is Θ(n), just like the best case. 

So insertion sort is fast when given an almost-sorted array. 

To sum up the running times for insertion sort: 

• Worst case: Θ(n2). 

• Best case: Θ(n). 

• Average case for a random array: Θ(n2). 

• "Almost sorted" case: Θ(n). 

 f you had to make a blanket statement that applies to all cases of insertion sort, you would 

have to say that it runs in O(n2) time. You cannot say that it runs in Θ(n2) time in all cases, 

since the best case runs in Θ(n) time. And you cannot say that it runs in Θ(n) time in all 

cases, since the worst-case running time is Θ(n2). 

13.Show how to implement a stack using two queues.Analyze the running time of the stack       

operations.
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14. find the closest asymptotic tight bound by solving the recurrence equation  

 T(n)=8T(n/2)+n2 with (T(1)=1) using recursion tree method.[Assume that T(1)ЄӨ(1)] 
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15.Derive a loose bound on the following equation: F(x)=35 x8 -22x7+14x5 -2x4 -4x2+x-15 
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16.Solve the recurrence relations  

X(n) =x( n-1) +5 for n > 1 x(1)=0 

 

X(n) =3x( n-1)    for n > 1 x(1)=4 

 

X(n) =x( n-1) +n for n > 0 x(0)=0 

 

X(n) =x( n/2) +n  for n > 1 x(1)=1 (solve for n= 2 k) 

 

                         X(n) =x( n/3) +1  for n > 1 x(1)=1 (solve for n= 3 k)   

 

 X(n) =x( n-1) +5 for n > 1 x(1)=0 

 

X(1)=0 

If n=2 

X(2)=x(2-1)+5 

       =x(1)+5 

       =0+5 

     =5 

If n=3 

X(3)=x(3-1)+5 
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       =x(2)+5 

       =5+5 

     =10 

 

If n=4 

X(4)=x(4-1)+5 

       =x(3)+5 

       =10+5 

     =15........ 

 

17.Use the most appropriate notation to indicate the time efficiency  class of sequential search  

            algorithm in the worst case,best case and the average case. 

 

 

Solution : Sequential search  

 “Given a target value and a random list of values, find the location of the target in the 

list, if it occurs, by checking each value in the list in turn” 

get (NameList, PhoneList, Name) 

i = 1 

N = length(NameList) 

Found = FALSE 

while ( (not Found) and (i <= N) ) { 

    if ( Name == NameList[i] ) { 

        print (Name, “’s phone number is ”, PhoneList[i]) 

        Found = TRUE 

    } 

    i = i+1 

} 

if ( not Found ) { print (Name, “’s phone number not found!”) } 

Central unit of work: operations that occur most frequently 

Central unit of work in sequential search:  

Comparison of target Name to each name in the list 

Also add 1 to i 

Typical iteration: two steps (one comparison, one addition) 

Given a large input list: 

Best case: smallest amount of work algorithm must do 

Worst case: greatest amount of work algorithm must do 

Average case: depends on likelihood of different scenarios occurring 

◼ Best case: target found with the first comparison (1 iteration) 

◼ Worst case: target never found or last value (N iterations) 

◼ Average case: if each value is equally likely to be searched, work done varies from 1 

to N, on average N/2 iterations  

Sequential search worst case (N) grows linearly in the size of the problem 2N steps (one 

comparison and one addition per loop) Also some initialization steps... 

On the last iteration, we may print something...After the loop, we test and maybe print... 

To simplify analysis, disregard the “negligible” steps (which don’t happen as 

often), and ignore the coefficient in 2N Just pay attention to the dominant term (N)  

Order of magnitude O(N): the class of all linear functions (any algorithm that takes C1N + 

C2 steps for any constants C1 and C2) 
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18.(i) Prove that if g(n) is Ω(f(n)) then f(n) is O(g(n)).May/June 2018 

f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n)) 

 Proof: 

  O(f(n))={g:N→N  |  ∃c,n0∈N  ∀n≥n0:g(n)≤c⋅f(n)} 

  Ω(g(n))={f:N→N  |  ∃c,n0∈N  ∀n≥n0:f(n)≥c⋅g(n)} 

  Step 1/2: f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n)) 

  ∃c,n0∈N ∀n≥n0: f(n)≥c⋅g(n)⇒f(n)g(n)≥c⇒1g(n)≥cf(n)⇒g(n)≤1c⋅f(n) 

   And this is exactly the definition of O(f(n)). 

  Step 2/2: f(n)∈Ω(g(n))⇐g(n)∈O(f(n)) 

  ∃c,n0∈N ∀n≥n0: g(n)≤c⋅f(n)⇒...⇒f(n)≥1c⋅g(n) 

  Hence proved. 

 

19. Explain briefly about Empirical Analysis of Algorithm.  

 

The principal alternative to the mathematical analysis of an algorithm’s efficiency is its 

empirical analysis. This approach implies steps spelled out in the following plan. 

 

General Plan for the Empirical Analysis of Algorithm Time Efficiency 

1. Understand the experiment’s purpose. 

2. Decide on the efficiency metric M  to be measured and the measurement unit(an operation 

count vs. a time unit). 

3. Decide on characteristics of the input sample (its range, size, and so on). 

4. P r e p a r e  a  p r o g r a m  i m p l e m en t i n g  t h e  a l g o r i t h m  f o r  t h e  

e x p e r imentation.  

5. Generate a sample of inputs. 

6. Run the algorithm (or algorithms) on the sample’s inputs and record the data observed. 

7. Analyze the data obtained. 

 

 

 

 

1. Purpose: 

• To ensure theoretical assertion about the algorithm’s efficiency 

• comparing the efficiency of several algorithms for solving the same problem or different 

implementations of the same algorithm 

• developing a hypothesis about the algorithm’s efficiency class 

• ascertaining the efficiency of the program implementing the algorithm on a particular 

machine.  

2. how  & What to measure 
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• Include a variable counter, to count the number of times the 

algorithm’s basic operation is executed.  

• In the implementing the algorithm , measure the running time of basic 

operation 

Example 

• In unix, the system command time may be used. 

• computing the difference between the two(t  finish−t  start ).  

 

Disadvantages of Measuring the system time 

1. System’s time is typically not very accurate, and you might get somewhat 

different results on repeated runs of the same program on the same 

inputs. An obvious remedy is to make several such measurements and then take 

their average (or the median) as the sample’s observation point.  

2. In the high speed of modern computers, the running time may fail to register 

at all and be reported as zero. The standard trick to overcome this 

obstacle is to run the program in an extra loop many times, measure the total 

running time, and then divide it by the number of the loop’s repetitions. 

3. The computer running under a time-sharing system such as UNIX, the reported time 

may include the time spent by the CPU on other programs, which obviously defeats the 

purpose of the experiment. Therefore, 

yous h o u l d t a k e c a r e t o a s k t h e s y s t e m f o r t h e t i m e d e v o t e d s p e c i fi

c a l l y t o e x e c u t i o n  o f  y o u r  p r o g r a m .  ( I n  U N I X ,  t h i s  t i m e  i s  

c a l l e d  t h e  “ u s e r  t i m e , ”  a n d  i t  i s  a u t o m a t i c a l l y  provided by the 

time command.) 

 

Advantage of Measuring physical running time 

(i) the physical running time provides very specific information about an 

algorithm’s performance in a particular computing environment  

(ii) Measuring time spent on different segments of a program can pinpo int a 

bottleneck in the program’s performance that can be missed by an abstract 

deliberation about the algorithm’s basic operation profiling.  

4. Deciding on a sample of inputs 

 

Sample size: (it is sensible to start with a relatively small sample and increase it later 

if necessary) 

Range of input sizes: (typically neither trivially small nor excessively large) 

 

• procedure for generating instances in the range chosen.  

• The instance sizes c an  e i t h e r  adh e r e  t o  s om e  p a t t e r n  ( e .g . ,  10 0 0,  

2 0 00 ,  3 00 0 ,  .  .  .  ,  10 , 00 0o r 5 00 ,  1 00 0 , 2000, 4000, . . . , 128,000) or 

be generated randomly within the range chosen. 

• Several instances of the same size should be included or not. 

5. Generate a sample of inputs (random numbers) 

 

Typically, its output will be a value of a (pseudo)random variable uniformly distributed in 

the interval between 0 and 1. If a different (pseudo)random variable is desired, 

an appropriate transformation needs to be made. For example, if  x is a continuous 

random variable uniformly distributed on the interval 0≤x < 1, the variable y =l+⌊x(r −l)⌋ 
w i l l  b e  u n i f o r m l y  d i s t r i b u t ed  a m o n g  t h e  i n t e g e r  v a l u e s  b e t w e en  

i n t e g e r s  l and r −1( l  <  r ) .  

Alternatively, you can implement one of several known algorithms for generating 

(pseudo)random numbers. The most widely used and thoroughly studied of such algorithms 

is the linear congruential method  
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ALGORITHM 

 Random(n, m, seed,  a ,  b )  

//Generates a sequence of  n  pseudorandom numbers according to the linear 

/ / c o n g r u e n t i a l  m e t h o d  

//Input: A positive integer n and positive integer parameters m, seed,  a ,  b  

//Output: A sequence r1,  . . . , rn of n pseudorandom integers uniformly 

/ /  d i s t r i b u t e d  a m o n g  i n t e g e r  v a l u e s  b e t w e e n  0  a n d  m−1 

//Note: Pseudorandom numbers between 0 and 1 can be obtained 

/ /  b y  t r e a t i n g  t h e  i n t e g e r s  g en e r a t e d  a s  d i g i t s  a f t e r  t h e  d e c i m a l  p o i n t  

r0← seed 

for i ←1 to n do 

ri ←(a ∗ri−1+b) mod m 

 

6. Data analysis 

• It is a good idea to use both these options whenever it is feasible because both 

methods have their unique strengths and weaknesses. 

• The advantages of tabulated data lies in the opportunity to manipulate it easily 

and to find efficiency class of the algorithm. 

• The Scatter plot representation helps in the analysis of algorithm efficiency 

class as given in figure 

Shape of the scatter plot Efficiency class 

Concave shape  Logarithmic 

Point around straight line or between two 

straight line 

Linear 

Convex shape Quadratic and nlogn 

Convex shape with rapid increase in the 

metrics valus 

Cubic 
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Typical scatter plots. (a) Logarithmic. (b) Linear. (c) One of the convex 

functions 

Application: 

1. Predicting the algorithm performance on a sample size not included in the experiment 

sample. 

2. The standard techniques of statistical data analysis and prediction can also be done. 

 

20. Explain briefly about Algorithm Visualization. 

Algorithm visualization is defined as the use of images to convey some useful information 

about algorithms. That information can be a visual illustration with the following 

combinations. 
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1. Algorithm’s operation on different kinds of inputs 

2. Same input for different algorithms to compare the execution speed. 

An algorithm visualization uses graphic elements—points, line segments, two- or three-

dimensional bars, and so on—to represent some “interesting events” in the algorithm’s 

operation. 

There are two principal variations of algorithm visualization: 

1. Static algorithm visualization 

2. Dynamic algorithm visualization, also called algorithm animation 

Static algorithm visualization shows an algorithm’s progress through a series of still images. 

Algorithm animation, on the other hand, shows a continuous, movie-like presentation of an 

algorithm’s operations. Animation is an arguably more sophisticated option, which, of 

course, is much more difficult to implement. 

The features of an animations user interface was suggested by Peter Gloor is listed below 

• Be consistent 

• Be Interactive 

• Be clear and concise 

• Be forgiving to the user 

• Adapt to the knowledge level of the user 

• Emphasis the visual component 

• Keep the user interested 

• Incorporate both symbolic and iconic representations 

• Include algorithm analysis and comparisons with other algorithm for the same 

problem 

• Include execution history 

The success of Sorting Out Sorting made sorting algorithms a perennial favorite for 

algorithm animation. Indeed, the sorting problem lends itself quite naturally to visual 

presentation via vertical or horizontal bars or sticks of different heights or lengths, which 

need to be rearranged according to their sizes (Figure 2.8). This presentation is convenient, 

however, only for illustrating actions of a typical sorting algorithm on small inputs. For 

larger files, Sorting Out Sorting used the ingenious idea of presenting data by a scatterplot of 

points on a coordinate plane, with the first coordinate representing an item’s position in the 

file and the second one representing the item’s value; with such a representation, the process 

of sorting looks like a transformation of a “random” scatterplot of points into the points along 

a frame’s diagonal (Figure 2.9). In addition, most sorting algorithms work by comparing and 

exchanging two given items at a time—an event that can be animated relatively easily. 
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Applications: 

1. Education - Seeks to help students learning algorithms. 

2. Research - Helps to uncover some unknown features of algorithms. 

IMPORTANT QUESTIONS 
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Part A 

 

1. Show the notion of an algorithm.          Dec 2009 / May 2013 

2. What are six steps processes in algorithmic problem solving?   Dec 2009 
3. What is time and space complexity?   Dec 2012 

4. Define Algorithm validation.      Dec 2012 

5. Differentiate time complexity from space complexity.     May 2010 

6. What is a recurrence equation?        May 2010 

7. What do you mean by algorithm?    May 2013 

8. Define Big Oh Notation.   May 2013 

9. What is average case analysis?  May 2014 

10. Define program proving and program verification.   May 2014 

11. Define asymptotic notation.  May 2014 

12. What do you mean by recursive algorithm?   May 2014 

13. Establish the relation between O and Ω   Dec 2010 

14. If f(n) = amnm + ... + a1n + a0. Prove that f(n)=O(nm).Dec 2010 

15. Define the Fundamentals of Algorithmic Problem Solving  

16. Short notes on Important Problem Types  

17. .Define Fundamentals of the Analysis of Algorithm Efficiency  

18. Show the Analysis Framework  

19. Define Asymptotic Notations and its properties 

20. Define Mathematical analysis for Recursive and Non-recursive algorithms.  

 

Part B 

1. Explain the notion of algorithm. May 2014 

2. Explain the fundamentals of algorithm. May 2014    

3. Find the time complexity and space complexity of the following  problems. Factorial using  

    recursion and compute the nth Fibonacci number using iterative statements.   Dec 2012 

4.Solve the following recurrence relations:    Dec 2012 

 1. T(n)=   2T(n/2)+3  n>2 

         2                n=2 

 

 2. T(n)=  2T(n/2)+cn n>1 

        a               n=1   where a and c constants 

     

5. Distinguish between Big Oh, Theta and Omega notation.  Dec 2012    

6. Analyse the best case, average and worst case analysis for linear  search. Dec 2012   

7. Explain how time complexity is calculated. Give an example.    Apr 2010 

8. Elaborate on asymptotic notation with example.    Apr 2010    

9. Briefly explain the time complexity, space complexity estimation June 2013 

10. Write linear search algorithm and analyse its complexity. June 2013     

11. Show the following equalities are correct      June 2013 

 i. 5n2-6n = Φ(n2) 

 ii. n!=O(nn) 

 iii. n3+106n2=Θ(n3) 

 iv. 2n22n + n log n = Θ(n22n)    

12. What are the features of an efficient algorithm? June 2014 

13. What is space complexity? With an example explain the components  of   fixed and variable  

      part in space complexity. June 2014  

14. Explain towers of Hanoi problem and solve it using recursion. June 2014    

15. Derive the recurrence relation for Fibonacci series algorithm : also   carry out time 

       complexity analysis. June 2014     

16. Discuss in details about the efficiency of the algorithm with example. Mar 2014 
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  17.Explain the procedure to calculate the time complexity of binary search using non-recursive 

Algorithm. 

18. Explain briefly the time complexity and space complexity estimation. Nov 2010 

19. Write a linear search algorithm and analyse its best, worst and average case time complexity.  

20. Prove that for any two functions f(n) and g(n), we have f(n)->  Θ(g(n)) 

         if   and only if f(n) - > O(g(n)) and  f(n) ->Ω(g(n))     Nov 2010 

21.Explain the Mathematical analysis for non-recursive algorithm 

 

ANNA UNIVERSITY APRIL/MAY 2015 

 

PART-A 

1.write algorithm to find the number of binary digits in the binary  representation of a positive  

   decimal integer Part A – Refer Q. No. 56 
2.write down the properties of asymptotic notations. Part A – Refer Q. No. 57 

 

PART-B 

11.(a)if you have to solve the searching problem for a list of n numbers, how  can you take  

        advantage of the fact that the list is known to be sorted? Give separate answers for 

(i) List represented as arrays 

(ii) List represented as linked list Compare the time complexity involved in the analysis   

of both the algorithms  Refer  Q. No. 27 

     OR 

    (b)(i)Derive the worst case analysis of merge sort using suitable illustrationRefer Q.No. 28 

         (ii) Derive a loose bound on the following equation:  

F(x)=35 x8 -22x7+14x5 -2x4 -4x2+x-15 Q.No. 15 

  

ANNA UNIVERSITY NOV/DEC 2015 

 

PART-A 

1.The (log n)th smallest number of n unsorted numbers can be determined in O(n) average-case time     

  (True/False) Refer Q. No. 60 

2. Fibonacci algorithm and its recurrence relation Refer  Q. No. 61 

 

PART-B 

11.(a)(i)write Insertion sort algorithm and estimate its running time.(8) Refer  Q. No. 12 

         (ii)find the closest asymptotic tight bound by solving the recurrence equation  

 T(n)=8T(n/2)+n2 with (T(1)=1) using recursion tree method.[Assume that T(1)ЄӨ(1)] 

     Refer  Q. No. 14 

     OR 

    (b)(i)Suppose W satisfies the following recurrence equation and base case (where c is a  

            constant):W(n)=c.n+W(n/2) and W(1)=1.What is the asymptotic order of W(n).  

Refer  Q. No. 14 

        (ii)Show how to implement a stack using two queues. Analyze the running time of the stack  

Operations. Refer  Q. No. 13 

 

ANNA UNIVERSITY APRIL/MAY 2016 

 

PART-A 

1. Give the Euclid’s algorithm for computing gcd(m, n) Refer  Q. No. 58 

2. Compare the order of growth n(n-1)/2 and n2. Refer Q. No. 59 

 

PART-B 

1. a.( i) Give the definition and Graphical Representation of O-Notation.(8) Refer  Q. No. 4 
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       (ii) Give an algorithm to check whether all the Elements in a given array of n elements   

             are distinct. Find the worst case complexity of the same. (8) Refer Q. No.5(2) 

OR 

(b) Give the recursive algorithm which finds the number of binary digits in the binaryrepresentation 

of a positive decimal integer. Find the recurrence relation and complexity. (16) Refer Q. No.6(3) 

 

ANNA UNIVERSITY NOV/DEC 2016 

 

PART-A 

1.Design an algorithm to compute the area and circumference of a circle Refer  Q. No. 63 

2.Define recurrence relation. Refer Q. No. 45 

 

PART-B 

11.(a)(i)Use the most appropriate notation to indicate the time efficiency  class of sequential search  

            algorithm in the worst case,best case and the average case. Refer  Q. No. 17 

        (ii) State the general plan for analyzing the time efficiency of nonrecursive algorithm and  

            explain with an example(8) Refer  Q. No. 5 

(b) Solve the recurrence relations Refer Q. No. 16 

 X(n) =x( n-1) +5 for n > 1 x(1)=0 

X(n) =3x( n-1)    for n > 1 x(1)=4 

X(n) =x( n-1) +n for n > 0 x(0)=0 

X(n) =x( n/2) +n  for n > 1 x(1)=1 (solve for n= 2 k) 

X(n) =x( n/3) +1  for n > 1 x(1)=1 (solve for n= 3 k)  (16) 

 

ANNA UNIVERSITY APRIL/MAY 2017 
 

PART-A 

1. What is an algorithm? Refer  Q. No. 1 

2. Write an algorithm to compute the greatest common divisor of two numbers Refer  Q. No. 10 

 

PART-B 

1. Explain briefly Big oh notation , Omega notation and Theta notation give an example Q. No. 30 

2.Briefly explain the mathematical analysis of recursive and non recursive algorithmQ.No.35 & 40 

 

ANNA UNIVERSITY NOV/DEC 2017 
 

PART-A 

1. How to measure an algorithm’s running time ? Refer  Q. No. 21 

2. What do you mean by “worst case efficiency: of an algorithm. Refer  Q. No. 55 
 

PART-B 

1. Discuss the steps in Mathematical analysis for recursive algorithms. Do the same for finding 

    Factorial of a number Refer Q. No. 6 

2. What are the Rules of Manipulate Big-Oh Expression and about the typical growth rates of 

algorithms? Refer  Q.No.4 
 

ANNA UNIVERSITY MAY/JUNE 2018 
 

PART-A 

1. Give the Euclid’s algorithm for computing gcd of two numbers. Refer  Q. No. 58 

2. What is a basic operation? Refer  Q. No. 63 
 

PART-B 

1. a) Define Big O notation, Big Omega and Big Theta Notation. Depict the same graphically and 

explain. Refer  Q.No.4 
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b) Give the general plan for Analyzing the time efficiency of Recursive Algorithms and use 

recurrence to find number of moves for Towers of Hanoi problem. Refer Q.No.6 

ANNA UNIVERSITY NOV/DEC 2018 
 

PART-A 

1. Define algorithm. List the desirable properties of an algorithm. Refer  Q. No. 64 

2. Define best, worst, average case time complexity. Refer  Q. No. 65 
 

PART-B 

1. (i) Prove that if g(n) is Ω(f(n)) then f(n) is O(g(n)). Refer  Q.No.18 

(ii) Discuss various methods used for mathematical analysis of recursive algorithms.  

Refer Q.No.6 

2. Write the asymptotic notations used for best case, average case and worst case analysis of 

algorithms. Write an algorithm for finding maximum element in an array. Give best, worst and 

average case complexities. Refer  Q.No.4 

 

ANNA UNIVERSITY APRIL/MAY  2019 
 

PART-A 

1. How do you measure the efficiency of an algorithm? - Refer  Q.No.29 

2. Prove that the of f(n)=o(g(n)) and g(n)=o(f(n)),then f(n)=θ g(n). - Refer  Q.No.66 

 

PART-B 

1.a) (i) solve the following recurrence equation: - Refer  Q.No.8 

1.T(n)=T(n/2)+1,where n=2k for all k>=0 

2.T(n)=  T(n/3)+ T(2n/3)+cn,where  ‘c’ is a constant and ‘n’ is the input size. 

(ii) Explain the steps involved in problem solving. - Refer Q.No.8 

 

2.(i) write an algorithm for determining the uniqueness of an array. Determine the time 

complexity of your algorithm. - Refer Q.No.5 

(ii) Explain time-space trade off of the algorithm designed - Refer  Q.No.3 

 

ANNA UNIVERSITY NOV/DEC 2019 
 

PART-A 

1. State the transpose symmetry property of O and Ω - Refer Q.No.66 

2. Define recursion - Refer Q.No.67 

 

PART-B 

1. a) i) Solve the following recurrence equations using iterative method or tree Refer  Q.No.6  

ii) Elaborate asymptotic analysis of an algorithm with an example. Refer Q.No.4 

2. b) write an algorithm using recursion that determines the GCD of two numbers. Determine the 

time and space complexity - Refer Q.No.1.A 
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PART-A 

1. Define algorithm with its properties. Refer  Q.No.1 

2. List the reasons for choosing an approximate algorithm. Refer  Q.No.68 

PART-B 

1. a) i) Consider the problem of counting, in a given text the number of substrings that start with 

an Aand end with a B. For example, there are four such substrings in CABAAXBYA. Design 

a brute-force algorithm for this problem and determine its efficiency class. Refer  Q.No.6 
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ii) “The best-case analysis is not as important as the worst-case analysis of an algorithm”. 

Yes or No ? Justify your answer with the help of an example. Refer  Q.No.11 

 

2. b) (i) Solve : T(n) = 2T(n/2) + n3. Refer  Q.No.11 

(iii) Explain the importance of asymptotic analysis for running time of an algorithm with an 

example. Refer  Q.No.4 
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PART-A 

 

 

1. Define the notation big-Omega. Refer  Q.No.14 

2. What is meant time complexity of an algorithm? Refer  Q.No.7 

 

 

PART-A 
11. a) Outline worst case running time, best case running time and average case running time of 

an algorithm with an example? 

                b) Outline a recursive algorithm and non recursive algorithm with an example. 

          Refere Q.No.35 & 40 
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